当前位置:首页 > 测试测量 > 测试测量
[导读]据国外媒体报道,一个由美国国家光学天文台科学家Knut Olsen领导的研究小组通过位于智利的Cerro Tololo美洲天文台4米口径的布兰柯望远镜发现:位于银河系周边小麦哲伦星云中出现恒星离奇失踪的现象,而大麦哲伦星云中

据国外媒体报道,一个由美国国家光学天文台科学家Knut Olsen领导的研究小组通过位于智利的Cerro Tololo美洲天文台4米口径的布兰柯望远镜发现:位于银河系周边小麦哲伦星云中出现恒星离奇失踪的现象,而大麦哲伦星云中的恒星却增加了数百个。随后该小组通过使用斯皮策红外空间望远镜进一步发现大麦哲伦星云从小麦哲伦星云中“偷取”恒星的情况。在图像中用不同的颜色来代表视线速度,即红色的是代表恒星离开星云,蓝色是代表运动方向面向地球,用这种方法区别出星云中天体的相对位移,而这两个星云都可在南半球用肉眼可见。

美国国家光学天文台科学家Knut Olsen和Bob Blum,分析了大麦哲伦星云中5900个大质量恒星的光谱,并得到斯皮策空间天文台科学家和亚利桑那大学的天文学家的帮助,发现在观测对象中,有超过5%的恒星的移动方向靠近大麦哲伦星云中恒星集群的区域,或者说这些恒星朝着麦哲伦星云运动。但是这个结果也只是个较为含糊的推测,因为目前的技术只能测量到这些恒星的视向速度,并不能精确地测量出恒星运动的速度向量。在这种理论推演下,从所观测的恒星奇特的轨道显示,这些恒星并不是由大麦哲伦星云中的气体、尘埃等物质经过旋转等正常途径形成的。进一步的研究也发现:在大麦哲伦星云中出现的异常现象的恒星也揭示出另一个异常的情况。这些恒星的化学成分是不同的,他们所含有的重元素,如钙和铁的含量比星云中普通的恒星要少很多,然而,奇怪的是,这些恒星的化学成分与相邻的小麦哲伦星云中的恒星类似,在小麦哲伦星云中的恒星也恰恰是缺少重元素的。

通过观测恒星的运动方向和化学成分的组成这两个证据,研究小组认为大麦哲伦星云强大的引力将小麦哲伦星云中的恒星给“偷”了过来。针对这个情况,天文学家同时也使用了位于智利的美洲天文台布兰科望远镜的多目标光谱仪,该仪器可以同时观测大量恒星集群(4600颗恒星)的特殊的光谱特征。并结合已经观测到得1300颗恒星的数据,研究小组的一位科学家提出不同的建议,目前还不能充分地说明这些恒星是否是“偷”来的或者是以不同机制形成于本星云。而有一点是肯定的:由于大麦哲伦星云距离地球较近,能观测到星云中巨大数量的单个恒星,而部分恒星却有着显著的不同点,其形成机制或者地点肯定是与众不同的。

该研究小组同时也使用斯皮策红外望远镜研究大麦哲伦星云中恒星的形成和演化问题,美国国家光学天文台副主任Bob也认为这个研究途径是非常重要的:通过空间望远镜可以对大麦哲伦星云中的恒星进行全面的普查,随后可以再通过地面天文台对恒星的具体特征和运动情况进行分析。但是,由恒星特征和运动情况这两者推测分析,大麦哲伦星云中的部分恒星与小麦哲伦星云中的恒星有着显著的相同点,这让我们必须深入思考星系或者星云间是如何随着时间的推移进行互动的。

这个结论可能可以解释为什么在大麦哲伦星云中西南方向的另一处不同寻常的恒星大量聚集情况,该天区被称为剑鱼座30,也称为蜘蛛星云,位于大麦哲伦星云中恒星形成区内。如果剑鱼座30位于我们银河系中,也就是靠近我们的猎户座星云,其余辉将在地球上投下巨大的阴影,差不多是满月面积的60倍。而剑鱼座30所在的那边宇宙空间,其气体成分被证实来自小麦哲伦星云,随着小麦哲伦中恒星被吸入大麦哲伦星云,这些气体也以极高的速度与大麦哲伦星云中的物质相碰撞。这些气体碰撞产生的强大的冲击波同时也反作用于星际气体,将其进行压缩封闭,这样更可能形成超大质量的恒星,而这些恒星却又不稳定,在气体的强烈冲击下,可能出现爆炸,就比如1987年出现超新星爆炸就可能与这些气体冲击有关。而同时,在这片天区内通过X射线天文台也发现古老的超新星爆炸遗迹。

(小麦哲伦星云中恒星离奇消失)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭