当前位置:首页 > 测试测量 > 测试测量
[导读]怎么样区分便携式音频设备的性能好坏呢?从用户接口能够评判产品的主要差异,但这在很大程度上取决于主观评价。我们可以利用客观的音频性能指标对产品进行比较,说明一个产品之间的差异。评估音频性能的一个重要指标

怎么样区分便携式音频设备的性能好坏呢?从用户接口能够评判产品的主要差异,但这在很大程度上取决于主观评价。我们可以利用客观的音频性能指标对产品进行比较,说明一个产品之间的差异。

评估音频性能的一个重要指标是设备在打开或关断时,耳机(或扬声器)出现的“咔嗒”声或其它奇怪的瞬态噪声。随着人们对产品性能期望值的提高,无瞬态杂音成为人们选择产品的一项重要指标,因而也是便携式音频设备的关键卖点。直到目前为止,业界仍然从主观上评价这种咔嗒声,“较低的咔嗒声”和“无咔嗒声工作”等描述代表了对咔嗒声定量分析的主观判断。但是,用户的期望值在变化,设计人员需要得到评判咔嗒声的客观指标。用一种定量表示咔嗒声参数的方法,这种方法可以在不同产品中对产品进行重复比较。

咔嗒声是指放大器驱动转换器打开或关闭时,在耳机或扬声器中出现的音频瞬态信号。在便携式应用中,降低功耗是延长电池使用时间的关键,当不需要某些功能模块工作时,一般会禁用这些模块。这种功能有可能会进一步突出咔嗒声这一不利因素。

当器件打开或关断时,理想元件不应出现音频输出,而实际应用中,所有的音频放大器都会产生咔嗒声。根据所用转换器(扬声器或耳机)的灵敏度、转换器与人耳的距离、放大器处理瞬变信号的能力以及听觉的敏感度,可以听不到咔嗒声。尽管确定音频阈值涉及到许多因素,可以利用放大器输出指标(与音频传输函数无关)定量对比产品的性能。

Maxim将音频测试分为两类,以合理测量KCP测量。第1项(上电)和第2项(断电)属于A类。一般假设正常工作状态下,带有关断(SHDN)功能的Maxim产品在上电时具有受关断引脚(或寄存器位)控制的瞬变模式。A类并不代表正常的使用,只是在测量那些软件控制无法关断器件时才相关。第3项和第4项(B类测量)更贴近正常的使用情况。

两个不同的耳机放大器退出关断状态的瞬态过程,将第一个交流耦合耳机放大器和第二个直流耦合耳机放大器进行对比,交流耦合耳机放大器退出关断时产生较大的瞬变,这种瞬变产生明显的低频声音,原因是其较慢的开启过程。

第二种瞬变过程,即直流耦合耳机放大器,似乎淹没在A加权滤波之前示波器的噪声底中。对于这种放大器,大部分音频来自从关断到完全工作时产生的直流失调电压。由于失调只有几个毫伏,没有经过滤波的信号不能精确决定咔嗒声的大小。采用A加权滤波后,从噪声基底中提取出直流耦合耳机放大器失调产生的咔嗒声,获得更客观的测量结果。

怎样客观地测量瞬变?如果需要,采用什么标准来衡量测试结果?

开始测量时,将待测设备(DUT)输出连接到负载或模拟负载(假负载)。在DUT上加载所需的SHDN和电源,将所有DUT输入交流耦合至地。不需要输入信号;输入激励包括DUT在各种工作或停止工作模式之间切换的控制信号。连接DUT输出至音频分析仪的模拟分析部分。

下一步,选择分析仪的A加权滤波(建议)或非加权22Hz至22kHz滤波器,将测量带宽限制在音频范围内。请注意,示波器的快速高电平瞬变并不表明有多少能量出现在音频频带内。人耳对扬声器或耳机瞬变信号的频率响应很有限。因此,增加A加权滤波更有利于分析,因为这样增强了人耳敏感的频率分量。某些音频分析仪不能选用A加权,这种情况下,应限制人耳频率响应的带宽。音频测试设备中常用的限制带宽是22Hz至22kHz,带宽限制滤波器大概能达到20kHz的平坦响应(通常为人耳的上限)。

设置检测器为峰值读数(而不是RMS值),设置检测器采样为每秒32次。对于我们要采集的瞬变等信号,RMS检测没有作用。系统2分析仪支持更高的采样率,而每秒32次采样率能够从系统1音频分析仪获得同等的测量选项。 (每秒32次采样率是系统1模型中最快的采集设置。) 禁用音频分析仪的范围自动调整电路,手动选择能够精确跟踪预期的峰值信号幅度。系统1和系统2分析仪的范围为1倍至1024倍(0至60.21dB),步长4倍(12.04dB)。为实现精确测量,建议音频放大器咔嗒声测量的起始点采用1X/Y范围。

采用低频方波驱动SHDN引脚,以便进行重复测量。SHDN循环频率低于音频频带,周期应足够长,以确保能够采集到所有的打开和关断事件(某些型号具有较长的开启延迟)。Maxim通常选择0.5Hz周期。工作和关断之间出现瞬变时,分析仪的直方图选项能够轻松监控DUT瞬变。可以很容易地确定峰值电压,测量期间能够迅速复位直方图。峰值电压以dBV (相对于1V的dB值)进行记录。这一指标为KCP。

上述测试方法能够支持类似器件的对比,产生可重复的客观结果。测试设备最好能够对任何大小的输入保持线性响应。例如,测试1mV冲击响应时的峰值读数应比同样脉冲宽度的100mV冲击相应低40dB。

带有外部滤波的示波器完全可以用在这一咔嗒声测量方案中。但是,经验表明高质量耳机放大器的咔嗒声电平典型值在毫伏范围,这对于大部分示波器来说要想进行精确测量具有一定难度。可以采用示波器测试大功率放大器等电压较高的设备。

同一型号的不同器件可能产生不同的测试结果。因此,在判定某型号性能之前应测试多个器件以均衡这种差异。对于设计合理的直流耦合耳机放大器,大部分咔嗒声与输入失调电压成正比,除非经过均衡(或以别的方式消除),不同器件的输入失调电压存在一定差异。全面测试某一型号时,为确保结果的一致性,应多次测量每一工作模式的瞬变。然后,计算平均值。如果器件即将投入使用,建议进行多次测量。测试立体声或多通道产品的所有通道。

尽管我们已经说明了怎样获得咔嗒声指标的客观测量方法,但还存在一个问题:精度如何?

考虑以下问题,采用上述方法测量两个耳机放大器之后,您得到了可以重复的B类咔嗒声抑制结果,第一个放大器的KCP为-59dBV,第二个是-61dBV。第二个放大器的噪声真的比第一个小很多吗? 或者说,这两个结果都是可以接受的吗? 测量结果是客观的,但是对“可接受”的理解仍然是主观的。[!--empirenews.page--]

一个能够接受、能够检测到的咔嗒声抑制电平取决于多个因素:待测耳机/扬声器的效率、人耳到转换器之间的典型距离、SHDN循环频率以及收听时的背景噪声电平等。在很多应用中,尽管许多因素会影响可接受咔嗒声电平的建立,我们还是可以规定一个可信的指标基准。注意,Maxim耳机放大器B类咔嗒声的测试结果(表2),所有测试均采用一个32负载电阻,每一KCP值代表每个端口四次采样的平均值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭