当前位置:首页 > EDA > 电子设计自动化
[导读]Synopsys的全新HAPS-80基于FPGA的原型解决方案提供高达100MHz的系统性能,集成化的HAPS硬件和ProtoCompiler软件将首款原型的完成时间缩短为不到2周。亮点:·基于FPGA的HAPS-80原型系统结合ProtoCompiler软件,

Synopsys的全新HAPS-80基于FPGA的原型解决方案提供高达100MHz的系统性能,集成化的HAPS硬件和ProtoCompiler软件将首款原型的完成时间缩短为不到2周。

亮点:

基于FPGA的HAPS-80原型系统结合ProtoCompiler软件,提供高达100MHz的多FPGA性能,以及全新的、自动化的引脚高速时分复用

ProtoCompiler软件专用于HAPS系统,自动化分区使首款原型的完成时间缩短为平均不到两周

HAPS-80企业级配置采用赛灵思(Xilinx)VirtexUltraScale FPGA芯片,可支持高达16亿个专用集成电路(ASIC)逻辑门,并支持面向并行设计执行的远程使用和多设计模式

内置调试功能,能够捕获到数千个RTL信号,由工具自动插入,实现更高的调试效率和可见度

作为Synopsys Verification Continuum平台的一部分,VCS仿真结合Unified Compile以及Verdi调试结合Unified Debug简化了在仿真、模拟和原型之间的移植,使设计和验证的启动时间缩短了数月

新思科技(Synopsys, Inc.,纳斯达克股票市场代码:SNPS)日前宣布:推出全新HAPS®-80基于FPGA的原型系统,该系统为Synopsys的端到端原型解决方案的一部分。HAPS-80系统提供了高达100MHz的多FPGA性能,以及全新的专用高速时分复用(HSTDM)技术。HAPS-80采用Xilinx最新的Virtex UltraScale VU440 FPGA器件,每颗FPGA可容纳2600万个ASIC门,结合ProtoCompiler设计自动化和调试软件,可支持高达16亿个ASIC门的设计。HAPS硬件与ProtoCompiler软件的结合,极大地加速了软件开发、硬件/软件集成和系统验证。

ProtoCompiler软件内置HAPS系统架构的知识,与非集成化方案相比,它实现了自动分区,使得首款原型的平均时间缩短为不到2周,而后续的编译迭代则可在几小时内完成。ProtoCompiler利用HAPS-80的全新HSTDM功能,自动选择引脚时分复用最优组合方案,可与待测设计最佳地匹配。HAPS-80集成解决方案,对于单FPGA设计性能可高达300MHz;在不使用引脚时分复用的情况下,多FPGA设计性能可高达100MHz;在使用全新专有高速引脚时分复用的情况下,多FPGA设计性能可超过30MHz。HAPS-80系统性能的提升,使得操作系统不到一分钟便可启动到命令提示符,让设计人员能够探测和初始化硬件设备,如CPU、定时器和通用异步接收发送器(UART)等。HAPS-80也支持真实世界I/O全速运行。

“Synopsys使用了Xilinx前6代FPGA器件,是Xilinx在基于FPGA原型验证领域内的长期商业伙伴。Synopsys紧密集成了硬件和软件HAPS基于FPGA的原型解决方案,定位于从Virtex®UltraScale™ VU440器件提供最高性能和最大容量”Xilinx测试、测量和仿真市场业务部总监HannekeKrekels表示。“UltraScale芯片的器件密度提升了2.2倍,I/O增加了21%,它对于使用HAPS系统来实现多FPGA分区的复杂SoC原型是非常理想的。”

与上一代产品相比,ProtoCompiler自动化从RTL到FPGA镜像的时序驱动流程,提供最高的原型性能和最快的迭代时间。ProtoCompiler以最优的多FPGA分区、最低的引脚时分复用比、优化的综合和引导式布局布线创建原型。这些特性使设计人员能够方便地利用HAPS-80的全部容量范围,高达16亿ASIC逻辑门。ProtoCompiler从IP到SoC的层次化流程,将RTL、设计原型约束、预定义的调试可观测点和逻辑综合指示封装在一起,以消除在SoC中重复这些任务的需求,将集成时间缩短了数周。

“Baikal-T1是世界上首款使用Imagination MIPS Warrior P5600 CPU实现的芯片,是我们致力于创新和高质量的结果,这得益于我们的研发中心采用了严格的硬件/软件集成和系统验证方法。我们依靠Synopsys的HAPS原型系统来提供高性能的ASIC原型,如为Baikal-T1提供的一个原型就在一个快速交付期限内准时完成,”贝加尔电子(Baikal Electronics)首席技术官Gregory Khrenov表示。“我们期待HAPS-80的众(诸)多特性为我们未来的工程项目带来益处。”

通过总是可用的第四代深度追踪调试技术(HAPS DTD4, HAPS Deep Trace Debug Gen4),HAPS-80系统提供了出色的调试可见度和自动化技术,通过它可在运行时从每个FPGA捕获超过1000个调试信号位。HAPS-80系统内置了调试数据采集、存储器和专用路由,且它们由ProtoCompiler自动插入以确保最小的干预,总是对用户可用。与Synopsys的Verdi™调试软件结合,HAPS DTD4可帮助设计人员以仿真器般的经验在原始RTL源文件的语境中,快速地辨识复杂的设计行为,使调试时间缩短多达50%。此外,HAPS和ProtoCompiler结合Verification Continuum的Unified Compile技术,使得在Synopsys VCS®仿真、ZeBu®模拟和HAPS原型之间移植更容易,从而可为设计和验证节省数月时间。

通用多源总线(UMRBus)的主机连接能力支持混合原型验证、全球可访问和大型原型群等使用模式。UMRBus在HAPS-80系统和Synopsys基于Virtualizer的虚拟原型之间无缝连接,为早期软件开发和硬件/软件集成创造了一种集成化的混合原型验证环境。此外,HAPS-80可向下兼容HAPS-70,让设计人员可复用现有的系统和硬件配件。对原生以太网连接的支持,使HAPS-80系统通过标准以太网连接便可实现系统的全球可访问。HAPS-80解决方案支持多设计模式,在企业配置中,可跨HAPS系统同时执行多个设计,为多项目用途提供最高的原型利用率及更高的投资回报率。

“我们优化每一代产品HAPS原型系统,提供最高的系统性能和设计人员生产率。新一代的HAPS-80系列解决了SoC设计人员在性能、可扩展性、首款原型完成时间和调试等方面的痛点,同时保持了与HAPS-70系统之间的互操作性,”Synopsys IP和原型营销副总裁John Koeter表示。“HAPS硬件和ProtoCompiler软件的独特结合,可在最短的时间实现最高性能的首款原型,以加速大型SoC及GPU设计的软件开发、硬件/软件集成和系统验证。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Bluespec支持加速器功能的RISC-V处理器将Achronix的FPGA转化为可编程SoC

关键字: RISC-V处理器 FPGA SoC

为无处不在的端侧设备插上AI的翅膀,AMD发布第二代Versal™ 自适应 SoC

关键字: AMD FPGA 自适应SoC AI 边缘计算

Pmod接口可以说是数字电路板的连接革命。随着科技的飞速发展,数字电路板间的通信与连接技术也在不断创新和进步。Pmod接口,作为一种新兴的数字接口标准,正逐渐成为数字电路板间通信的桥梁,为电子设备的连接和通信带来了革命性...

关键字: pmod接口 FPGA 数字电路板

近日举办的GTC大会把人工智能/机器学习(AI/ML)领域中的算力比拼又带到了一个新的高度,这不只是说明了通用图形处理器(GPGPU)时代的来临,而是包括GPU、FPGA和NPU等一众数据处理加速器时代的来临,就像GPU...

关键字: FPGA AI 图形处理器

当我们提到成本优化型FPGA,往往与简化逻辑资源、有限I/O和较低制造工艺联系在一起。诚然,在成本受限的系统设计中,对于价格、功耗和尺寸的要求更为敏感;但随着一系列创新应用的发展、随着边缘AI的深化,成本优化型FPGA也...

关键字: AMD FPGA Spartan 边缘计算

全球领先的高性能现场可编程门阵列(FPGA)和嵌入式FPGA(eFPGA)半导体知识产权(IP)提供商Achronix Semiconductor公司宣布,该公司参加了由私募股权和风险投资公司Baird Capital举...

关键字: FPGA 智能汽车 eFPGA

全新 FPGA 能为嵌入式视觉、医疗、工业互联、机器人与视频应用提供高数量 I/O、功率效率以及卓越的安全功能

关键字: FPGA 嵌入式视觉 机器人

Altera致力于为客户提供端到端的FPGA、易于使用的AI、软件和弹性供应链。

关键字: FPGA AI

在半导体领域,大部分对于AI的关注都集中在GPU或专用AI加速器芯片(如NPU和TPU)上。但事实证明,有相当多的组件可以直接影响甚至运行AI工作负载。FPGA就是其中之一。

关键字: FPGA AI 半导体

半导体产品老化是一个自然现象,在电子应用中,基于环境、自然等因素,半导体在经过一段时间连续工作之后,其功能会逐渐丧失,这被称为功能失效。半导体功能失效主要包括:腐蚀、载流子注入、电迁移等。其中,电迁移引发的失效机理最为突...

关键字: 半导体 电迁移 FPGA
关闭
关闭