当前位置:首页 > 电源 > 功率器件

1引言

流的MOSFET开关管,可输出6A电流,输出电压从0.9V到3.3V可调,精确率可达1%,脉宽调制频率既可固定在350kHz或550kHz,也可以在280kHz到700kHz之间调整;另外,它还具有限流电路、低压闭锁电路和过热关断电路。

TPS54610集成化的设计减少了元件数量和体积。因此,可广泛用于低电压输入高电流输出的分散电源系统(如DSP、FPGA、A-SIC、微处理器电源,宽带网络和光纤通讯以及便携式笔记本电脑的电源系统)中。

2 TPS54610的引脚功能 AGND(1脚):模拟地。

BOOT(5脚):自举电路输出,在BOOT脚和PH脚间应连接0.02~0.1μF的电容。

COMP(3脚):误差放大器输出,COMP脚与VSENSE脚间应接频率补偿电路。

PGND(15~19脚):电源地,使用时应与AGND单点连接。

PH(6~14脚):相输出,功率MOSFET高低端与输出电感的连接点。

PWRGD(4脚):"电源好"输出,当VSENSE端的电压高于Vref的90%时,输出为高;否则为低。注意:当SS/ENA引脚为低或内部SHUTDOWN有效时,该引脚始终为低。

RT(28脚):频率设置电阻输入,在RT和AGND间连接一个电阻可以设置开关频率,当使用SYNC端时,通过RT设置的频率应稍低于外部振荡器的频率。

SS/ENA(26脚):软启动/输入输出使能端,可提供控制器允许工作逻辑,该脚的另一个功能是通过外接电容来设置软启动时间。

SYNC(27脚):同步输入,可提供外部振荡器同步逻辑信号,此时要求RT引脚必须连接一个电阻,在内部振荡时用于开关频率的切换。

VBIAS(25脚):内部偏压调节,与AGND引脚间应接一个0.1μF~1μF的陶瓷电容。

VIN(20~24脚):电源输入,与PGND间应连接10μF的陶瓷电容。VSENSE(2脚):误差电压放大器反向输入,可通过补偿和分压电路与输出端相连。

3电路设计

3.1内部补偿和外部补偿

内部补偿和外部补偿是TI公司电源控制芯片采用的两种不同的电路形式。采用内部补偿的控制器力求减少外部元件的数量和印制板的尺寸,因此电路简单,并可采用软件方法(如TI公司的SWIFTDesigner)来设计。但内部补偿控制器存在两个缺点,第一是内部补偿控制器的降压变换电路只能获得固定的电压输出,如TPS54611获得的输出电压固定为0.9V,而TPS54616获得的输出电压固定为3.3V;另一个缺点是内部补偿限制了输出电容和电感的选择。很多情况下,出于各种考虑,如输出电压可调、输出电容和电感利用率和费用的要求,不允许采用内部补偿方式。在这种情况下,外部补偿芯片TPS54610便能提供更好的解决方案。下面介绍的就是基于TPS54610外部补偿结构的电路构成及设计方法。

3.2电路设计步骤

图2所示是以TPS54610为核心的外部补偿降压变换电路。现以该电路为例说明其设计方法。


(1)开关频率的选择 

当SYNC引脚接地时,开关频率为350kHz,当SYNC接输入电源电压时,开关频率为550kHz。为了获得可以调整的开关频率,可在RT引脚和地之间接一个外部电阻R1以使其频率可以在280~700kHz之间进行调整。开关频率与R1的对应关系如图3所示,这种情况下,SYNC应断开。从图中可以看出,100kΩ对应的开关频率为500kHz,其实际误差在±8%以内。

(2)输入电容的选择

输入解耦电容C2可用来减少高频噪声,设计时可选择1μF~10μF的陶瓷电容,并应尽量靠近集成芯片安装。

降压输入电容C1可用于减少输入纹波电压。但如果解耦电容已足够滤波,可不设置该电容。为了确定是否需要该电容,首先要确定最大允许纹波电压。为确保能够正常工作,TPS54610的纹波电压峰峰值不允许超过300mV。

(3)输出滤波元件的选择  

输出滤波电路由输出电感L1和输出电容COUT(图2中C8、C9、C10)组成。和内部补偿控制器相比,TPS54610对这两个元件的选择通常限制不大。

(4)补偿元件的选择

反馈补偿电路包含元件图中的R2、R3、R5、R6,元器件的选取方法有多种,定性和较宽的带宽。 先应考虑的是补偿误差放大次,补偿误差放大器应将到100mV左右,另外,电路总的回路串扰频率应小于开关频率的1/8,同时相角裕量至少应为45°。

通过图2中补偿元件的参数设计可将总的回路响应串扰频率范围限制在10~0kHz,相位裕量范围设定在0~90°之间。图中各电阻的偏差应小于1%,电容偏差应小于10%。

(5)偏置电路和自举电容的选择

偏置电容C4一般采用0.1μF的陶瓷电容,并置于VBIAS和AGND之间。自举电容C7一般采用0.022~0.1μF的陶瓷电容,并将其连接在BOOT引脚和PH之间。

(6)软启动时间的选择

TPS54610内部含有软启动电路,可用来控制启动时输出电压的上升时间,内部慢启动时间设置为3.6ms。另外,通过在SS/ENA引脚连接软启动电容C3可使其输出电压的上升时间超过内部设置值,软启动电容的选择可由下式得到: Css=5 tss/0.891式中,tss为软启动时间。

软启动一般从输入电压超过3V的启动阈值电压开始,之后,如果使用内部软启动电路,输出电压将开始以线性方式上升到输出电压值,而如果外接有软启动电容,输出电压将经过固定的延时tDELAY后开始上升,tDELAY取决于软启动电容的取值,它可由下式计算: tDELAY=1.2 CSS/5μF  

采用上述参数设计的图2电路的输出电压为1.8V,输出电流可达6A,开关频率为680kHz。电路中的输出滤波电容由C8、C9、C10共同组成。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

泰克科技这一全新的产品组合提供一整套独一无二的功能,能够满足从超低功率到超高功率的储能和电源电子设计需求。随着EA的加入,泰克科技能够为那些正在促进世界电气化的工程师们提供更全面的装备。

关键字: 电源设计

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

负电压电源设计在电子设备中具有广泛的应用价值。本文将介绍负电压电源设计的基本原理和方法,并探讨其应用方案。

关键字: 负电压电源 电源设计

电子电度表是一种广泛应用于电力测量和计量的设备,其电源设计的合理性和可靠性直接影响到表计的精度和稳定性。本文将详细阐述电子电度表电源设计的原理、实现方法、影响因素和实际应用效果,以突出电源设计在电子电度表中的重要性和必要...

关键字: 电子电度表 电源设计

便携式仪表中的电源设计是确保设备正常运行的关键部分。本文将介绍如何实现便携式仪表中的电源设计,包括设计思路、电源模块设计、充电模块设计、保护模块设计和应用实例等方面。

关键字: 便携式仪表 电源设计

【2023年7月27日,德国慕尼黑讯】在静态开关应用中,电源设计侧重于最大程度地降低导通损耗、优化热性能、实现紧凑轻便的系统设计,同时以低成本实现高质量。为满足新一代解决方案的需求,英飞凌科技股份公司(FSE代码:IFX...

关键字: 静态开关 MOSFET 电源设计

TFT-LCD发明于1960年经过不断的改良在1991年时成功的商业化为笔记型计算机用面板﹐从此进入TFT-LCD的世代。

关键字: TFT-LCD 显示器 电源设计

为增进大家对电源的认识,本文将对电源的分类以及电源设计的一些相关问题予以介绍。

关键字: 电源 指数 电源设计

21ic 近日获悉,索尼官方正式确认其正在开发一款 PlayStation 手持设备以便更轻松地玩 PS5 游戏,该设备为 Project Q 的 PS5 串流掌上设备,在本周的 PlayStation Showcase...

关键字: 索尼 PS5 Project Q PlayStation
关闭
关闭