当前位置:首页 > 电源 > 电源电路
[导读]USB Type-C 标准允许使用标准电缆实现 5V 至 20V 范围内的可调输出电压和高达 3A 的负载电流。由于功率水平高达 60W,反激式仍然是拓扑的不错选择。然而,为初级侧控制器提供偏置电源可能会带来一些挑战。

USB Type-C 标准允许使用标准电缆实现 5V 至 20V 范围内的可调输出电压和高达 3A 的负载电流。由于功率水平高达 60W,反激式仍然是拓扑的不错选择。然而,为初级侧控制器提供偏置电源可能会带来一些挑战。

反激变压器上的辅助绕组通常为隔离边界初级侧的控制器供电。该绕组产生的电压与输出电压成正比。在输出电压范围为 4 比 1 的情况下,偏置电压也会以 4 比 1 的倍数变化。实际上,考虑到由于振铃导致的偏置电容器的峰值充电,实际范围更宽。

我们必须设置从输出绕组到辅助绕组的匝数比,以便偏置电压足够高,以便在输出仅为 5V 时有效驱动初级 MOSFET。对于提供大约 12V 的驱动,1 比 2.5(输出与辅助)的比率可能是一个不错的选择。但是,这意味着当输出电压为 20V 时,辅助电压将超过 50V。显然,我们必须采取措施保护控制器免受过压损坏。

添加一个简单的钳位电路(如图 1 所示)提供了一个很好的解决方案。晶体管 (Q1) 必须具有相当高的增益,以确保在输出为 5V 时偏置电压不会下降。钳位电压由齐纳值 (D10) 设置。基极电阻 (R27) 必须设置得足够低,以便在输出为 5V 时提供必要的基极电流,但不能太低。基极电阻值过低会导致不必要的损失。


在 USB Type-C ACDC 应用中使用偏置控制器

图 1:需要一个钳位电路来限制偏置轨上的电压

乍一看,这种钳位电路似乎会显着增加待机(空载)功率损耗。但是,在拔下 USB Type-C 电缆的空载情况下,输出电压默认为 5V。当输出为 5V 时,钳位电路几乎不会增加额外的功率损耗。即使有了这个额外的钳位,将待机损耗保持在 50mW 以下也相当简单。

UCC28740隔离反激式电源控制器使用光耦合器提供恒定电压(CV),以改善对大负载阶跃的瞬态响应。恒流(CC)调节是通过一次侧调节(PSR)技术实现的。该设备处理来自光耦合反馈和辅助反激绕组的信息,以实现对输出电压和电流的精确高性能控制。

内部700-V启动开关、动态控制的工作状态和定制的调制配置文件支持超低待机功率,而不牺牲启动时间或输出瞬态响应。

UCC28740中的控制算法允许运行效率达到或超过适用标准。驱动输出与MOSFET电源开关连接。具有谷值开关的不连续传导模式(DCM)降低了开关损耗。开关频率和一次电流峰值振幅(FM和AM)的调制在整个负载和线路范围内保持了较高的转换效率。

控制器的最大开关频率为100 kHz,并始终保持对变压器峰值一次电流的控制。保护功能可控制主要和次要部件的应力。170 Hz的最小开关频率有助于实现小于10 mW的空载功率。

● 特征:

■ 空载功率小于10 mW

■ CV采用光耦合反馈,CC采用一次侧调节(PSR)

■ 在线路和负载上实现±1%的电压调节和±5%的电流调节

■ 700伏启动开关

■ 100 kHz最大开关频率可实现高功率密度充电器设计

■ 谐振环谷开关操作,整体效率最高

■ 频率抖动以缓解EMI合规性

■ MOSFET的箝位栅驱动输出

■ 过压、低压线路和过电流保护功能

■ SOIC-7封装

■ 使用UCC28740和WEBENCH®Power Designer创建自定义设计


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

大多数 ADC、DAC 和其他混合信号器件数据手册是针对单个 PCB 讨论接地,通常是制造商自己的评估板。将这些原理应用于多卡或多 ADC/DAC 系统时,就会让人感觉困惑茫然。通常建议将 PCB 接地层分为模拟层和数字...

关键字: 混合信号 电源设计

器件失效的元凶主要包括电气过应力(EOS)、静电放电(ESD)、温度异常、机械应力、环境腐蚀及设计缺陷等。 ‌

关键字: 元器件 电源设计

电子元器件都有其使用寿命,随着时间推移会出现自然老化现象。电容器电解液干涸、电阻值漂移、半导体器件性能退化等都是典型的老化表现。特别是在高温环境下,元器件老化速度会显著加快。据统计,温度每升高10℃,电子元器件的寿命就会...

关键字: 元器件 电源设计

在电源设计与研发过程中,精确测量电源从轻载到满载的效率至关重要。它不仅关乎电源的性能评估,还直接影响产品的能耗标准和市场竞争力。搭建一套自动化测试系统,能够高效、准确地完成这一测量任务,成为电源行业的重要需求。

关键字: 电源效率 电源设计

在电源设计领域,环路稳定性直接决定了电源系统的性能与可靠性。若环路不稳定,电源可能出现振荡、过冲等问题,影响负载设备的正常运行。波特图分析与补偿网络调优是解决电源环路稳定性问题的关键技术手段,以下将详细介绍其实战步骤。

关键字: 电源环路 波特图 电源设计

电容补偿,顾名思义,是指利用电容器的补偿作用来提升电力系统的功率因数。其原理在于,当负载增加导致电源输出电压下降时,电容器能发挥其独特的储能特性,通过维持其两端的电压稳定,从而延缓电压下降的趋势。这种并联连接的补偿方式,...

关键字: 电容 电源设计

PCB过孔是用于将不同层的铜箔线路连接起来的导电通道。通常为多层结构,常见的如双层板、四层板,甚至可以达到几十层。在这些层之间,过孔起到导电桥梁的作用。它是通过在电路板上钻孔,再在孔壁上镀铜而形成的导电通道。过孔的形状可...

关键字: PCB 电源设计

理想电压源的内阻为零,理想电流源的内阻为无穷大‌。理想电压源是指内阻为零的电源,这意味着无论负载如何变化,输出电压始终保持恒定,不会因为负载的变化而改变‌。理想电流源是指内阻为无穷大的电源,这意味着无论负载如何变化,输出...

关键字: 电阻 电源设计

第五代标志性开关IC产品系列可在经典反激式架构中实现高达175W的输出功率和92%的效率

关键字: 电源设计 反激式架构 二极管

Flex Power Modules推出了BMR510两相集成功率级模块的升级版本。新款BMR5101041/002不仅提升了效率,还将峰值电流从140 A增加至160 A,而且还包含了528 µF板载输出电容,显著增强...

关键字: 板载电容 电路板 电源设计
关闭