当前位置:首页 > 电源 > 电源电路
[导读]SiC MOSFET 在开关状态下工作。然而,了解其在线性状态下的行为是有用的,这可能发生在驱动器发生故障的情况下,或者出于某些目的,当设计者编程时会发生这种情况。

SiC MOSFET 在开关状态下工作。然而,了解其在线性状态下的行为是有用的,这可能发生在驱动器发生故障的情况下,或者出于某些目的,当设计者编程时会发生这种情况。

线性区

电子元件的线性区(或有源区)是无法循环所有可用电流的区域,其行为就像电流调节器一样。不言而喻,功耗非常高,而效率则相反,极低。但是,也有电子元件工作在直线区域的情况,会出现以下情况:

· 栅极电压V g不在制造商设定的正负限制,而是位于中心区域附近。

· 漏源电压V ds不接近于零,而是处于高得多的电压。

· 漏极电流 I d由重要值表征。

· 组件耗散的功率非常高。

· 元件温度也很高。

· 电路效率低。

线性区域可用于为使用 SiC MOSFET 的无线电发射器创建 A 类模拟音频放大器,但也可能在组件驱动器发生故障时发生。因此,设计人员应控制 MOSFET 之前的电路。

MOSFET的电气图和线性操作

在我们的示例中,使用了具有以下属性的 SiC MOSFET 型号 C3M0160120D。接线图如图1所示。

· V ds : 1,200 V

· I d : 17 A, 25˚C

· R DS(on) : 160 mΩ

· 静态状态下的栅极电压:–4 V 至 15 V

· 最大功耗:97 W

在以下直流模拟中,栅极上的电压跨越制造商指定的整个范围(从 –4 V 到 15 V),当然不会超出这些限制。该电路为负载提供低电流,不会使半导体应变。测试的目的是观察组件的不同参数,特别是当它们在关闭区域或开启区域不起作用时。该仿真还监控结温和散热器温度。



电源设计说明:线性方案中的 SiC MOSFET

图 1:SiC MOSFET 线性区操作的接线图

接线图包括一个 200-V (V1) 电源、一个非常坚固的 100-Ω 电阻负载 (R1)、C3M0160120D SiC MOSFET (U1) 和一个可变电压发生器(从 –4 V 到 15 V),用于用驱动功能 (V2) 驱动 MOSFET 栅极。图中还包括一个散热器。

直流扫描模拟

系统的电气仿真没有预见瞬态状态,而是采用 DC 扫描模式,其中将在 –4 V 和 15 V 之间的范围内以 10 mV 的步长检查栅极的所有电源电压。通过这种方式,您将看到 MOSFET 对各种栅极电压的反应。用于执行此类仿真的 SPICE 指令如下:

.dc v2 -4 15 0.01

该系统的电气仿真没有瞬态模式,而是采用直流扫描模式,其中将在 –4 V 至 15 V 的范围内以 10 mV 的步长研究所有栅极的电源电压。

加载电流图

我们要检查的第一张图是与流过负载的电流有关的图,具体取决于栅极电压,如图 2 所示。X 轴代表栅极上的电压,Y 轴代表负载上的电流。如您所见,该图可以分为三个不同的区域:

· 该组件位于左侧的遮断区域(蓝色),因为栅极电压(从 –4 V 到 3 V)不足以导通器件。在这种情况下,MOSFET 不传导电流,DS 结实际上是开路(约 400 MΩ)。

· 由于栅极电压(从 7 V 到 15 V)足以使器件在决定时导通,因此器件位于右侧区域(绿色),其中组件处于饱和区。在这种情况下,MOSFET 传导最大电流,DS 结实际上是一个闭合电路(约 160 mΩ)。

· 元件位于线性区域的中心区域(红色)是栅极电压(从 3 V 到 7 V)允许器件传导部分电流的位置。在这种情况下,MOSFET 会发热很多,并用作低效率电流调节器。DS 结的欧姆电阻在 6 kΩ 和 2 Ω 之间。


电源设计说明:线性方案中的 SiC MOSFET

图 2:负载电流与栅极电压的关系图

设备消耗的功率

在前面的示例中,流经器件的电流代表典型操作,因为 DS 通道的欧姆电阻会随着栅极电压的升高而降低。栅极上的电压表示在 X 轴上,MOSFET 消耗的功率表示在 Y 轴上。另一方面,如图 3中的图表所示,耗散功率的轨迹非常引人注目。在这种情况下,还可以看到三个单独的部分:

· 左侧区域的栅极电压介于 –4 V 和 2 V 之间。在这种情况下,MOSFET 处于禁用状态,没有电流从负载流出,耗散功率几乎为零。

· 右侧区域的栅极电压在 6 V 和 15 V 之间。这种情况下,MOSFET 处于完全饱和状态,最大电流通过负载,平均耗散功率为 1.5 W。这种耗散是由于 R DS(on)的值,尽管它非常低,但在现代技术状态下还不等于零。

· 由于栅极电压在 2 V 和 6 V 之间,MOSFET 位于中心区域的线性区域。在这种情况下,MOSFET 处于有源区,并且耗散功率非常高,在 100 W 左右达到峰值,并导致大量热量积聚。虽然理论上避免将半导体的工作区域置于该范围内是至关重要的,但在某些情况下,设计人员会故意选择这样做。

电源设计说明:线性方案中的 SiC MOSFET


图 3:MOSFET 功耗与栅极电压的关系图

效率

系统的效率也与 MOSFET 消耗的功率成反比。请记住,计算通用电路效率的公式如下。

图 4中的图表显示了与栅极电压相关的电路效率趋势。当后者大约在 2 V 和 5.5 V 之间时,MOSFET 工作在线性区域,因此系统的效率不是最佳的。当设备处于饱和区时,该值几乎达到 100%。X 轴代表栅极上的电压,Y 轴代表电路的效率,以百分比表示。

电源设计说明:线性方案中的 SiC MOSFET


图 4:系统效率与栅极电压的关系图

MOSFET的工作温度

器件和散热器之间的结温控制也是一项非常重要的特权,它使设计人员能够正确确定所涉及的电流和冷却系统的尺寸。由于采用了 LTspice 库中提供的 SOAtherm-HeatSink 模型,只要SPICE半导体组件配备“Tc”和“Tj”端子,就可以监控这两个温度。在这个例子中,散热器的材料是铝。其热阻 (Rθ) 等于 0.2˚C/W。模拟的环境温度为 25˚C。最后,电子元件与散热器的接触面积为300 mm 2,而后者的体积为5,000 mm 3。最后,在图中图 5可以观察到与结和散热器相关的温度趋势。尽管图表将它们报告为以伏特表示的电压,但它们是以摄氏度表示的成熟温度。请记住,域是栅极电压的域,而不是时间的域。该图显示了两种不同的情况:

· 在 MOSFET 的阻断和饱和区,结温和散热器温度实际上等于环境温度,相当于 25˚C,而栅极电压介于 –4 V 和 2 V 之间,然后介于 9 V 和 15 V 之间。

· 在线性区域,温度非常关键,在最高峰值处,结达到 230°C,散热器达到 103°C。在这些条件下,显然 MOSFET 被破坏了。


电源设计说明:线性方案中的 SiC MOSFET

图 5:结和散热器温度与栅极电压的关系图

音频放大器

在线性状态下使用 SiC MOSFET 制作 A 类音频放大器是一个有趣的实验(参见图 6中的原理图)。今天,使用 A 类放大器极为罕见。但是,当您需要以非常小的失真放大信号时,A 类放大器非常有用。从音频的角度来看,在这种情况下,设备在其完整的线性区域内工作,确保了高效的性能。主要缺点是 A 类放大器会产生大量热量以消散,因为即使没有音频信号,MOSFET 和负载电阻器也必须消耗大量电流。因此,系统始终以最大可用功率工作。


电源设计说明:线性方案中的 SiC MOSFET

图 6:A 类放大器不会使音频信号失真,但会产生大量热量。

在接线图中,负载电阻R1至少应该能够承受130W,而MOSFET的功耗为60W。显然,提供的声音功率要低得多,效率也很低。在图 7 中,可以观察到输入和输出信号(后者与第一个信号反相,频率为 300 Hz),最重要的是,谐波失真小于 6%。

电源设计说明:线性方案中的 SiC MOSFET

图 7:A 类放大信号和相关的 FFT 处理

结论

以当今的高效研究方法,在线性状态下使用半导体不再有意义,而依靠 PWM 和开关解决方案要好得多,这无疑提供了更高的性能保证。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

泰克科技这一全新的产品组合提供一整套独一无二的功能,能够满足从超低功率到超高功率的储能和电源电子设计需求。随着EA的加入,泰克科技能够为那些正在促进世界电气化的工程师们提供更全面的装备。

关键字: 电源设计

【2024年3月14日,德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)近日推出750V G1分立式CoolSiC™ MOSFET,以满足工业和汽车功率应用对更高能效和功率密度日益增...

关键字: MOSFET SiC 车载充电器

中国上海(2024 年 3 月 6 日)– 德州仪器 (TI)(NASDAQ 代码:TXN)今日推出两个全新的功率转换器件产品系列,可帮助工程师在更小的空间内实现更高的功率,从而以更低的成本提供超高的功率密度。德州仪器新...

关键字: 电源设计 变压器 氮化镓

这款高度集成的 3.3 kV XIFM 即插即用数字栅极驱动器可与基于SiC的高压电源模块搭配使用,从而简化并加快系统集成

关键字: 栅极驱动器 SiC 电源

全新高功率密度传感器能够降低能量损耗,同时改进SiC和GaN技术的效率和可靠性

关键字: 电源转换 传感器 SiC

如何把握住2024年的行业新机遇,实现技术突破创新,赋能各类新兴应用的发展?新一年伊始,我们采访到了英飞凌科技全球高级副总裁暨大中华区总裁、英飞凌电源与传感系统事业部大中华区负责人潘大伟,他和我们分享了英飞凌这一年来的成...

关键字: 英飞凌 功率半导体 SiC GaN review2023

1月16日,大联大控股宣布,其旗下友尚推出基于安森美(onsemi)NCP1681和NCP4390芯片以及SiC MOSFET的3KW高密度电源方案。

关键字: 电源设计

1200 V分立器件提供出色的性能,有助于加速全球能源转型

关键字: 工业电源 SiC 电动汽车

计划作为蓝碧石半导体宫崎第二工厂投入运营

关键字: SiC 功率半导体
关闭