当前位置:首页 > 电源 > 功率器件
[导读]DC/DC转换器的设计频率越来越快,目的是减小输出电容和电感的尺寸,以节省电路板空间。正因如此,现在市场上出现越来越多工作在高输入电压下的DC/DC转换器,其可提供线压瞬态保护,更低的占空比使更快频率下难以达到

DC/DC转换器的设计频率越来越快,目的是减小输出电容和电感的尺寸,以节省电路板空间。正因如此,现在市场上出现越来越多工作在高输入电压下的DC/DC转换器,其可提供线压瞬态保护,更低的占空比使更快频率下难以达到更低的电压。许多电源集成电路制造厂商(IC)正在积极推销高频DC/DC转换器,声称可以减少电路板空间占用。工作在1MHz或者2MHz下的DC/DC转换器似乎是一个好主意,但开关频率对电源系统产生的影响远不止体积和效率两方面。本文介绍了几个设计实例,说明在高频下开关存在的一些好处和挑战。

  应用选择

  为了说明使用高开关频率的权衡过程,我们设计了三个独立电源,其工作频率分别为100、300和750 kHz。所有这三种设计,输入电压均为48V,输出电压均为5V,而输出电流均为1A。这些要求常用于为一个5-V逻辑USB,或者为其它DC/DC转换器使用的中频通用5-V总线供电,例如:低压降稳压器等。若想建立一些设计限制,所选允许纹波电压需为50mV,其约为输出电压的1%;同时选择使用0.5 A的峰至峰电感电流。德州仪器TPS54160是一种集成MOSFET的2.5-MHz、60-V、1.5-A降压DC/DC转换器,用作所有设计的稳压器。TPS54160特有外部补偿和快速可编程频率,适用于一些高输入电压的工业应用。

  电感和电容选择

  根据下列四个简化公式,选择每种情况的电感和电容:

  电感选择

  

(1a)

 

  可重写为:

  

(1b)

 

  其中,D(占空比)=5 V/48 V=0.104,且△I = 0.5 A峰至峰。

  电容选择

  I= C x dv/dt (2a)

  可重写为:

  

(2b)

 

  其中,△I = 0.5 A峰至峰,且△V=50 mV。

  就方程式2b而言,我们假设所选电容的等效串联电阻(ESR)忽略不计,陶瓷电容便是如此。我们选择陶瓷电容,用于所有三种设计,原因是其低电阻和小尺寸。方程式2b分子的乘数2表明DC偏压相关电容下降情况,原因是大多数陶瓷电容的数据表中都没有说明这一效应。

  图 1 TPS54160 参考示意图

  

 

  图1所示电路用于评估实验台上每种设计的性能。示意图中没有值的一些组件,为设计中修改了的组件。输出滤波器由L1和C2组成。所有三种设计的组件值都列举在表1中,这些值的选择是基于方程式1a到2b的结果。注意,每个电感的DC电阻随频率增加而减小。这是因为较少的匝数所需的铜长度更短。我们单独为每个开关频率设计了误差放大器补偿组件。选择补偿值的计算方法,超出了本文讨论的范围。

  最小“导通”时间

  最小可控“导通”时间限制是DC/DC转换器IC的一个特点,其为脉宽调制(PWM)电路的最窄可达脉宽。在降压转换器中,开关周期期间功率MOSFET导通的时间百分比被称作占空比,其等于输出电压与输入电压的比。使用TPS54160转换器时,占空比为0.104(4 V/48 V),而数据表中列出的最小“导通”时间为130 ns。可控脉宽限制产生一个最小可达占空比,而用最小“导通”时间乘以开关频率,我们可以轻松地计算出该占空比的大小。一旦知道了最小占空比,利用VIN乘以最小占空比,我们便可以计算出最低可达输出电压。最低输出电压同样也受转换器基准电压的限制,使用TPS54160时其为0.8V。

  本例中,我们可以通过750-kHz开关频率来产生一个5-V输出电压(参见表2)。但是,如果该频率为1 MHz,则最低可能输出电压被限制为约6V;否则,DC/DC转换器会跳过脉冲。替代方法是降低输入电压或者频率。在选择某个开关频率以前,你最好是先查看DC/DC转换器数据表,了解保证最小可控“导通”时间。

  DC/DC转换器的设计频率越来越快,目的是减小输出电容和电感的尺寸,以节省电路板空间。正因如此,现在市场上出现越来越多工作在高输入电压下的DC/DC转换器,其可提供线压瞬态保护,更低的占空比使更快频率下难以达到更低的电压。许多电源集成电路制造厂商(IC)正在积极推销高频DC/DC转换器,声称可以减少电路板空间占用。工作在1MHz或者2MHz下的DC/DC转换器似乎是一个好主意,但开关频率对电源系统产生的影响远不止体积和效率两方面。本文介绍了几个设计实例,说明在高频下开关存在的一些好处和挑战。

  应用选择

  为了说明使用高开关频率的权衡过程,我们设计了三个独立电源,其工作频率分别为100、300和750 kHz。所有这三种设计,输入电压均为48V,输出电压均为5V,而输出电流均为1A。这些要求常用于为一个5-V逻辑USB,或者为其它DC/DC转换器使用的中频通用5-V总线供电,例如:低压降稳压器等。若想建立一些设计限制,所选允许纹波电压需为50mV,其约为输出电压的1%;同时选择使用0.5 A的峰至峰电感电流。德州仪器TPS54160是一种集成MOSFET的2.5-MHz、60-V、1.5-A降压DC/DC转换器,用作所有设计的稳压器。TPS54160特有外部补偿和快速可编程频率,适用于一些高输入电压的工业应用。

  电感和电容选择

  根据下列四个简化公式,选择每种情况的电感和电容:

  电感选择

  

(1a)

 

  可重写为:

  

(1b)

 

  其中,D(占空比)=5 V/48 V=0.104,且△I = 0.5 A峰至峰。

  电容选择

  I= C x dv/dt (2a)

  可重写为:

  

(2b)

 

  其中,△I = 0.5 A峰至峰,且△V=50 mV。

  就方程式2b而言,我们假设所选电容的等效串联电阻(ESR)忽略不计,陶瓷电容便是如此。我们选择陶瓷电容,用于所有三种设计,原因是其低电阻和小尺寸。方程式2b分子的乘数2表明DC偏压相关电容下降情况,原因是大多数陶瓷电容的数据表中都没有说明这一效应。[!--empirenews.page--]图 1 TPS54160 参考示意图

 

  

 

  图1所示电路用于评估实验台上每种设计的性能。示意图中没有值的一些组件,为设计中修改了的组件。输出滤波器由L1和C2组成。所有三种设计的组件值都列举在表1中,这些值的选择是基于方程式1a到2b的结果。注意,每个电感的DC电阻随频率增加而减小。这是因为较少的匝数所需的铜长度更短。我们单独为每个开关频率设计了误差放大器补偿组件。选择补偿值的计算方法,超出了本文讨论的范围。

  最小“导通”时间

  最小可控“导通”时间限制是DC/DC转换器IC的一个特点,其为脉宽调制(PWM)电路的最窄可达脉宽。在降压转换器中,开关周期期间功率MOSFET导通的时间百分比被称作占空比,其等于输出电压与输入电压的比。使用TPS54160转换器时,占空比为0.104(4 V/48 V),而数据表中列出的最小“导通”时间为130 ns。可控脉宽限制产生一个最小可达占空比,而用最小“导通”时间乘以开关频率,我们可以轻松地计算出该占空比的大小。一旦知道了最小占空比,利用VIN乘以最小占空比,我们便可以计算出最低可达输出电压。最低输出电压同样也受转换器基准电压的限制,使用TPS54160时其为0.8V。

  本例中,我们可以通过750-kHz开关频率来产生一个5-V输出电压(参见表2)。但是,如果该频率为1 MHz,则最低可能输出电压被限制为约6V;否则,DC/DC转换器会跳过脉冲。替代方法是降低输入电压或者频率。在选择某个开关频率以前,你最好是先查看DC/DC转换器数据表,了解保证最小可控“导通”时间。

  脉冲跳跃

  DC/DC转换器无法足够快速地清除门驱动脉冲来维持理想占空比时,便会出现脉冲跳跃。电源会尝试调节输出电压,但由于距离更远的脉冲,纹波电压会增加。由于存在脉冲跳跃,输出纹波会呈现出分谐波成分,其可能出现噪声问题。限流电路也可能不再正常工作,因为IC可能不响应大电流峰值。一些情况下,如果控制器不正常工作,控制环路便可能会不稳定。

  效率和功耗

  DC/DC转换器的效率,是进行电源设计时需要考虑的最重要属性之一。低效率会转换成高功耗,必须要在印刷电路板(PCB)上使用单独的散热器或者更多的铜,才能处理这些功耗。功耗也对电源上游器件提出了更高的要求。如表3所示,功耗共有几个组成部分。

  三个例子的重要损耗组成部分,来自于FET驱动损耗、FET开关损耗和电感损耗。FET电阻和IC损耗是一致的,因为所有三个设计中都使用了相同的IC。由于所有例子中都选择了低ESR的陶瓷电容,因此电容损耗可以忽略不计。为了表明高频开关的影响,我们对每个例子的效率都进行了测量,并将其显示在图2中。该图清楚地表明,效率随开关频率增加而下降。若想提高所有频率下的效率,需要寻找到一种全负载状态下低漏到源“导通”电阻、低门电荷或者低静态电流规范的DC/DC转换器;或者寻找到一些具有更低等效电阻的电容和电感。

  表 1 三个举例电源设计的电容和电感选择

  

 

  表 2 130-ns最小“导通”时间的最小输出电压

  

 

  表 3 功耗组成部分

  

 

  图 2 三个举例频率下 TPS54160 的效率

  

 

  组件尺寸

  表4列出了三种设计要求的总电路板面积,以及电容和电感的焊盘面积。电容或者电感的建议焊盘面积,稍稍大于单个组件本身,且三种设计举例均使用了该面积。每个组件占用的面积相加(其包括IC、滤波器以及所有其它小型电阻器和电容的焊盘尺寸),然后将得到的结果乘以2倍(考虑到组件的间距),便得到总面积。100-kHz和750-kHz设计之间存在近250 mm2的总面积节省,从而使滤波器体积缩小50%,而板空间占用减少55%。但是,存在收益递减规律,因为电容和电感值无法减少至零!换句话说,不断推高频率并不能够一直减小总尺寸,因为你无法总是能够在市场上买到这些尺寸适合且批量生产的电感和电容。注意,33-µH和15-µH电感占用相同的面积。存在这种可能性,是因为33-µH电感的高度为3.5 mm,而15-µH电感仅高2.4 mm。我们想通过这两种电感来说明的观点是:电感与体积成正比例关系。

  表 4 组件尺寸和总面积要求

  

 

  图 3 100kHz、300 kHz和750 kHz 的波特图

  

 [!--empirenews.page--]瞬态响应

 

  瞬态响应是电源性能级别的一个较好指标。我们利用每种电源的波特图来表明高开关频率的对比情况(参见图3)。如图所示,每个电源的相位裕度在45°和55°之间,其表明瞬态响应得到较好的抑制。交叉频率约为开关频率的1/8。使用快速开关DC/DC转换器时,设计人员应确保电源IC误差放大器具有足够的带宽来支持高交叉频率。TPS54160误差放大器的单位增益频宽一般为2.7 MHz。表5显示了实际瞬态响应时间以及电压峰值过冲的相关值。开关频率越高,过冲值便越是更低,原因是更宽的带宽。

  表 5 瞬态响应

  

 

  表 6 小占空比时抖动与“导通”时间之比

  

 

  抖动考虑

  高转换比和更高频率时,会存在噪声问题。当选择某个高开关频率时,设计人员应考虑抖动和DC/DC转换器的最小“导通”时间。当占空比较小时,抖动噪声便为开关脉冲的更大百分比。表6显示了48-V到5-V转换比时,抖动与“导通”时间之比。我们假设,在该相位节点上存在0.5-V二极管压降和20-ns抖动。

  结论

  设计高频开关转换器时,存在许多折中考虑。本文介绍的一些优点包括更小的尺寸、更快的瞬态响应,以及更小的电压过冲/欠冲。获得这些优点的代价是效率低和散热多。但是,在挑战性能极限的过程中同样也存在许多陷阱,例如:脉冲跳跃和噪声问题。在为高频应用选择一种宽输入电压DC/DC转换器以前,我们应该首先查看制造厂商提供的数据表,以了解一些重要的规范,例如:最小“导通”时间、误差放大器的增益带宽、FET电阻以及FET开关损耗。在这些规范下运行良好的IC价格昂贵,但却对得起它的价格;在设计人员担心如何处理某个棘手的设计问题时,其更加易于使用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

舍弗勒以"专注驱动技术的科技公司"为主题亮相IAA MOBILITY 2025(B3馆B40展台) 合并纬湃科技后首次亮相IAA MOBILITY,展示拓展后的汽车产品组合 凭借在软件、...

关键字: 电气 软件 驱动技术 BSP

香港2025年 9月12日 /美通社/ -- 全球领先的互联网社区创建者 - 网龙网络控股有限公司 ("网龙"或"本公司",香港交易所股票代码:777)欣然宣布,其子公司My...

关键字: AI 远程控制 控制技术 BSP

深圳2025年9月11日 /美通社/ -- 2025 年 9 月 10 日,第 26 届中国国际光电博览会(简称 "CIOE 中国光博会")在深圳盛大开幕。本届展会吸引力再创新高,全球超3800家优质...

关键字: 自动化 光电 CIO BSP

天津2025年9月11日 /美通社/ -- 国际能源署(IEA)数据显示,2024 年全球数据中心电力消耗达 415 太瓦时,占全球总用电量的 1.5%,预计到 2030 年,这一数字将飙升至 945 太瓦时,近乎翻番,...

关键字: 模型 AI 数据中心 BSP

北京2025年9月11日 /美通社/ -- 国际9月11日上午,2025年中国国际服务贸易交易会(以下简称"服贸会")—体育赛事经济高质量发展大会现场,北京经济技术开发区工委委员、管委会副主...

关键字: 5G BSP GROUP MOTOR

柏林2025年9月9日 /美通社/ -- 2025年9月5日,纳斯达克上市公司优克联集团(NASDAQ: UCL)旗下全球互联品牌GlocalMe,正式亮相柏林国际消费电子展(IFA 2025),重磅推出融合企...

关键字: LOCAL LM BSP 移动网络

深圳2025年9月9日 /美通社/ -- PART 01活动背景 当技术的锋芒刺穿行业壁垒,万物互联的生态正重塑产业疆域。2025年,物联网产业迈入 "破界创造"与"共生进化" 的裂变时代——AI大模型消融感知边界,...

关键字: BSP 模型 微信 AIOT

"出海无界 商机无限"助力企业构建全球竞争力 深圳2025年9月9日 /美通社/ -- 2025年8月28日, 由领先商业管理媒体世界经理人携手环球资源联合主办、深圳•前海出海e站通协办的...

关键字: 解码 供应链 AI BSP

柏林2025年9月9日 /美通社/ -- 柏林当地时间9月6日,在2025德国柏林国际电子消费品展览会(International Funkausstellung...

关键字: 扫地机器人 耳机 PEN BSP

武汉2025年9月9日 /美通社/ -- 7月24日,2025慧聪跨业品牌巡展——湖北•武汉站在武汉中南花园酒店隆重举办!本次巡展由慧聪安防网、慧聪物联网、慧聪音响灯光网、慧聪LED屏网、慧聪教育网联合主办,吸引了安防、...

关键字: AI 希捷 BSP 平板
关闭