当前位置:首页 > 电源 > 功率器件
[导读]最近,为了降低无源元件的尺寸并获得快速动态响应,驱动频率已被提高至MHz的数量级。但驱动频率越高,开关损耗就越大。随着开关频率不断增加,MOSFET的开关损耗将超过导通损耗。特别是由于功率器件是在最高电压电流条

最近,为了降低无源元件的尺寸并获得快速动态响应,驱动频率已被提高至MHz的数量级。但驱动频率越高,开关损耗就越大。随着开关频率不断增加,MOSFET的开关损耗将超过导通损耗。特别是由于功率器件是在最高电压电流条件下关断的,因此,升压转换器的关断开关损耗要大于导通开关损耗。本文将介绍一种简单的能够降低或消除升压转换器开关损耗的LC谐振网络,并详细分析其工作模式。

  引言

  在便携式产品的各种DC/DC转换器中,效率已逐渐成为有关延长电池寿命的热门话题。在升压转换器或步进转换器中,主要的开关损耗是在功率开关关断时产生的,因为此时仍处于最大的电压电流转换条件。在非连续性电流模式(DCM)中,升压转换器的主要功率器件通过从零电流开始的一个软启动电流来导通。由于功率器件在高电压零电流时导通,所以它的开关损耗非常小,可以忽略不计。鉴于电感电流的正斜率,其流入功率器件的电流在器件关断时达到最大。因此,在DCM中,关断损耗比导通损耗大。不过,导通损耗是在连续电流模式(CCM)下产生的,但其关断损耗仍然大于导通开关损耗。本文所介绍的LC谐振电路,可降低或消除关断开关损耗。

  谐振电路的详细描述

  在升压、降压或升/降压转换器中,LC谐振网络可按图1所示实现。


  图1显示了无损耗LC谐振网络的不同应用实例。本文中,如图2所示,LC谐振网络被用于升压转换器。为简化模式分析,假设功率器件和所有无源元件都是理想的。图3显示了带有LC谐振网络的升压转换器在各个时段的工作模式。本文提出的具有附加谐振网络的升压转换器,它的工作可分为三种模式。首先,主开关Q是关断的。电感电流iL(t)具有负斜率,通过电感L和输出二极管Do流向负载,如图3(a)所示。电压VCr由一个正电平充电,并具有和输出电压Vo 相同的幅值,见图3(a)。


  模式1(t1≤t < t2):在t = t1时,Q导通。电感Lr和电容Cr启动谐振,谐振频率及其周期Tr可计算如下:

(1)

  (2)

         

  由于谐振阻抗Zr=√(Cr/Lr),故谐振峰值电流Irpk为:

(3)


  模式2(t2≤t < t3):一旦Q导通,谐振电流就迭加到MOSFET的漏极电流上。在非连续电流模式(DCM)中,漏极电流从零开始。由于Lr和Cr产生的谐振,使得Cr 的电压极性改变。如果电压VCr 变得比DC输入电压更高,则D1导通。因此,在Q导通时(如图3(c)和图4所示),通过输入电压,VCr 被很好地箝位。在谐振周期Tr 之后,电感电流具有正斜率,并与图3(e)所示的典型升压转换器的波形相同。电感电流峰值可计算如下:

(4)

  这里,Iin是输入平均电流,Ts是开关周期,D是占空比,定义为D  (t3 - t1)/ Ts。若Q关断,这种模式即结束。

  模式3(t3 ≤t < t4):如图3所示,当Q关断时,电感电流直接从MOSFET转到Cr。负载电流由输出滤波器提供,输入电压源没有电流流出。因此,利用一个恒定谐振电流,Cr电压从-Vin变为+Vo,如图4所示。在这种条件下,MOSFET漏源电压Vds具有一个斜率,因为它通过谐振电流Ipk从-Vin充电到+Vo。周期Td = t4 - t3之间的时间,可由下式求得:

(5)

 

  故此,MOSFET漏极电压正慢慢增加,同时其电流立即从MOSFET转向到电容Cr,从而有效地降低关断损耗。如图3(h)所示,若电容电压VCr超过输出电压幅值,那么D2会变为正向偏置,Cr经由D2-Lr-Do和输出电路相连接。这样一来,当Q关断时,如图4所示,通过输出电压Vo,Vcr得到很好的箝位。

[!--empirenews.page--]

 

  实验结果

  图5是用具有1.6MHz开关频率的FAN5331实现的LC谐振升压转换器。如图所示,LC谐振相关值有Cr = 53pF、Lr = 4.5mH、L = 10mH。因此,由式(1)可求得谐振周期为Tr=48.5ns。典型的输入电压为5.0V,输出电压设置为15.0V,负载电流为50mA。由开关频率可求得开关周期Ts = 0.625ms,输入输出转换占空比D = 0.67、Ton = 420ns及Toff = 205ns。


  由式(3)可知,谐振电流峰值Irpk=51.4mA,但实验结果却为40mA。当Vo=Vin=5.0V、Po=750mW时,平均输入电流Iin为176mA、Pin=880mW。故由式(4)可算出峰值电感电流Ipk=280mA。

  图6显示了带有和没有谐振LC网络的传统升压转换器的比较结果。如前关于工作模式中所阐述的,当Q导通时,谐振周期开 始。图7显示了Q导通或关断时的SOA安全工作区域曲线。正如预料,当Q关断时,传统升压转换器的漏极横截面上的电流电压要高得多。漏极横截面上电压电流的详细波形如图8所示。实验结果显示,利用无损LC谐振网络,开关损耗得以有效降低。


  谐振网络中谐振电感电流的实验结果如图9所示。谐振周期Tr 测量值大约为50ns,与Cr=53pF、Lr=4.5mH时根据式(1)计算的结果一致。


  图10显示了无损耗谐振LC网络的SOA曲线。比较图7和图10可看出,带有LC谐振网络的升压转换器的SOA比典型的没有LC谐振网络的升压转换器更好。图11比较了带有和没有谐振LC电路的传统升压转换器的效率,由图可见,效率有显著提高,尤其是当DC输入电压较低时。


  本文介绍了一种可获得更高效率的LC谐振升压转换器电路,给出了详细模式分析和设计指引。实验结果显示,这种LC谐振电路工作良好,可用于超便携式应用以延长电池寿命。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

本文介绍一款小尺寸、功能强大、低噪声的单芯片同步升压转换器。文章重点介绍了该集成电路的多个特性。这些特性能够增强电路性能,并支持定制,以满足各种应用的要求。

关键字: 升压转换器 集成电路 电路

LC电路,也称为谐振电路、槽路或调谐电路,是包含一个电感(用字母L表示)和一个电容(用字母C表示)连接在一起的电路。

关键字: 谐振电路

在现代电子技术的广阔领域中,LC 谐振电路和 LC 振荡电路是极为关键的组成部分,它们广泛应用于通信、信号处理、电源等多个领域。尽管二者都包含电感(L)和电容(C)元件,但在工作原理、电路特性以及实际应用方面存在显著差异...

关键字: 谐振电路 振荡电路 电路特性

在现代电子技术的飞速发展中,MDD 超快恢复二极管凭借其反向恢复时间短、开关损耗低等显著优势,在高频开关电源、功率因数校正(PFC)电路以及新能源等诸多领域得到了极为广泛的应用。然而,随着应用场景对功率密度和系统可靠性要...

关键字: 超快恢复二极管 开关损耗 恢复时间

在下述的内容中,小编将会对MOSFET的相关消息予以报道,如果MOSFET是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: MOSFET 驱动电流 开关损耗

MOSFET将是下述内容的主要介绍对象,通过这篇文章,小编希望大家可以对MOSFET的相关情况以及信息有所认识和了解,详细内容如下。

关键字: MOSFET 开关损耗

当使用电子产品时,拥有合适的工具是必不可少的。无论您是测试LED还是检查电路连续性,这款DIY 2合1 LED测试仪和连续性测试仪是任何电子爱好者的紧凑而有用的工具。

关键字: LED XL6009 升压转换器 三线电压表

在现代电子工程领域,Boost升压转换器作为一种重要的直流-直流(DC-DC)转换电路,广泛应用于需要提升电源电压的场合。本文旨在利用LTspice这一强大的电路仿真软件,对一个Boost升压转换器进行建模与仿真,具体参...

关键字: Boost 升压转换器 LTspice

在电路理论中,谐振是一个重要的概念,涉及到电路中电压和电流的相位关系。谐振电路主要分为两种类型:串联谐振和并联谐振。

关键字: 电压 谐振电路

在当前的全球能源危机中,重点是提高效率,电子产品面临着高性能、低耗电的严峻挑战。由于这场危机,世界各地的各种政府机构已经或正在考虑提高其各自规格的众多产品的效率标准。用传统的硬开关转换器很难达到这些效率规格。电源设计者需...

关键字: LLC谐振 开关损耗
关闭