当前位置:首页 > 电源 > 功率器件
[导读]  多路输出的开关电源因其体积小、性价比高广泛应用于小功率的各种复杂电子系统中。然而伴随着现代电子系统发展,其对多路输出电源的要求越来越高,如体积、效率、输出电

  多路输出的开关电源因其体积小、性价比高广泛应用于小功率的各种复杂电子系统中。然而伴随着现代电子系统发展,其对多路输出电源的要求越来越高,如体积、效率、输出电压精度、负载能力(输出电流)、交叉调整率、纹波和噪声等。其中,交叉调整率是指当多路输出电源的一路负载电流变化时整个电源各路输出电压的变化率,是考核多路输出电源的重要性能指标。受变压器各个绕组间的漏感、绕组的电阻、电流回路寄生参数等影响,多路输出电源的交叉调整率一直以来是多路输出开关电源的设计重点。

  目前改进交叉调整率的方法可分为无源和有源两类。有源的方法需要增加额外的线性稳压或开关稳压电路,虽然可以得到较高的交叉调整率,但却是以牺牲电源的效率、成本为代价的,且从可靠性和复杂性也不如无源的方法好。提起无源交叉调整率优化方法,有经验的工程师首先会想到输出电压加权反馈控制,其次如果选用反激电路还会通过优化变压器各绕组耦合以及优化嵌位电路来进一步优化交叉调整率,如果选用的是正激电路则会将各路输出滤波电感耦合在一起来进一步优化交叉调整率。可是当以上优化措施均已采用了,还是无法满足设计要求时,通常只好无奈地添加假负载用效率来换取交叉调整率,或改选为成本较高的有源的优化设计方案。

  下面介绍一种TDK-Lambda新型的改善交叉调制率的多路输出解决方案,此方案可以使得用无源方法进一步提高交叉调整率。

  如图1所示,对于匝数相等的两个输出绕组(Ns1=Ns2),我们在两个跳变的同名端跨接一个电容C1,这样可以很好地改善交叉调整率。

  

 

  图1

  对于图1所示的反激变换器,考虑其各绕组的漏感,可等效为图2所示电路,Lleak1、Lleak2和Lleak3分别绕组Ns1、Ns2和Np的漏感。

  

 

  图2

  由于Ns1=Ns2,在电源整个工作过程中,始终有Vs1=Vs2,所以电路可以等效为图3所示,其中Is1和Is2分别为流过绕组Ns1和Ns2的电流。

  

 

  图3

  电源稳定工作时,电感Lleak1和Lleak2两端的平均电压为0V,所以电容C1两端的平均直流电压也为0V.随着电容C1容值的增大,电容上的纹波电压会越来越小,所以Vo1会越来越接近Vo2,即电源的交叉调整率随着C1容值的增大会越来越好。

  为了便于分析,我们做出如下假设:

  1、忽略电路中二极管的压降,认为压降为0V。

  2、电容C1的容值很大,使得C1和漏感Lleak1和Lleak2的谐振周期大于SW1的开关周期。

  3、Vo2输出电压为反馈检测电压,保持不变,Vo2负载较重,Vo1为轻负载,Vo1>Vo2。

  基于上面假设,电源工作期间副边各元件的电流将如图4所示,Is1和Is2分别为流过绕组Ns1和Ns2的电流,Ip为变压器原边电流,ID1和ID2分别为流经D1和D2的电流,Vc1是电容C1上的电压。

  

 

  图4

  注:本图仅示意电压电流的变化方向

  为了便于确定电路的初始状态,我们以t5时刻作为电源工作周期的开始,在t5时刻二极管D1的电流变为0,电容C1上的电压Vc1此时处于最高值,且有:

  

 

  在二极管D1截止后,副边电路可进一步等效为图5所示电路。因为Vs

  

 

  图5

  到t6时刻原边开SW1关闭合后,Vs电压被感应为负值(如图6所示)。在SW1闭合期间电源分两个阶段工作:变压器电流由副边绕组向原边绕组换流(t6~t7)阶段和变压器储能(t7~t9)阶段。

  

 

  图6[!--empirenews.page--]

  在t6~t7期间,ID2>0,二极管D2继续导通,

  由关系式

  

 

  可知,电流Is1和Is2都快速下降,直到t7时刻ID1=Is1+Is2=0时,二极管反向截止,副边绕组向原边绕组换流阶段结束。

  在t7~t9阶段,二极管D2反向截止,电流Is1与Is2大小相等,反向相反。

  

 

  电容C1与漏感Lleak1+Lleak2谐振放电, 由于变压器副边到原边换流后Is2仍较大,所以Vc1很快在t8时刻有正电压变为负电压,并反向充电,同时电流Is2=-Is1开始减小,直到t9(也就是t0)时刻SW1关断。

  在t0时刻SW1关断,变压器进入由原边向副边的换流阶段,Vs>Vo2>Vo2+Vc1(此时Vc1<0),二极管D2开始,导通,电流Is1和Is2迅速增大,t1时刻Is1由负变为正,并经C1和D2流向Vo2(如图7所示)。t2时刻换流结束,此时有

  

 

  当变压器原边电流向副边换流结束后,Vs

  到t3时刻电容电压充电到Vs=Vc1+Vo2,并且随着Vc1的增加有Vs

  

 

  图7

  t4时刻,二极管D1开始导通, 副边电路又等效为图3,电流Is1经D1流向Vo1, C1电压被嵌位在Vc1=Vo1-Vo2,而Is1继续减小,直到t5时刻,Is1=0,二极管D1反向截止,电源完成一个开关周期的工作。

  图8为SW1关断期间副边各支路平均电流流向图。绕组Ns1和Ns2在输出的平均电流分别为:

  

 

  由图4中Vc1的波形可知,在开关SW1关断期间,电容C1的电压Vc1负变值为了正值,所以 Ic1>0, 所以可以得出:绕组间跨接电容C1后,在开关SW1关断期间,输出轻负载的绕组Ns1的实际负载加重了,而输出重负载的绕组Ns2的实际负载减轻了,所以会使得交叉调整率得以改善。

  

 

  图8

  目前此方案已经成功地应用到了TDK-lambda 的CUT75系列产品上。

  以CUT75-522为例,电源使用环境如下:

  输入电压:85 ~ 265VAC或 120 ~ 370VDC.

  负载范围: 5V: 0 ~ 8A;

  +12V: 0 ~ 3A;

  -12V: 0 ~ 1A。

  工作温度: -20 ~ 70℃。

  通过采在绕组间跨接电容,用无源的方法成功地将+12V和-12V的交叉调整率做到了±5%以内。下面表1为电源在各种输出负载情况下,实测的各路输出电压的最高值和最低值,以及基于实测值计算的交叉调整率。

  

 

  表1

  同时因为在绕组间跨接电容,可以使得CUT75系列电源在满足交叉调整率的情况下,能够把电源内部的假负载降到了几乎为零,所以有效的提高了电源的效率,从而使得电源的体积可以做的更小。CUT75系列电源在输入电压200VAC时满载效率实测值已经做到了85%,比市场上同类产品提高了约5%,其体积自然也比市场上同类产品要小。

  市场上能够满足±5%交叉调整率的同类产品,多采用有源的方法来优化交叉调整率, 而CUT75系列电源采用的是无源的方法,相比之下CUT75系列电源在可靠性方面更具优势。

  

 

  CUT75系列电源实物图

  郑重声明:

  此文章仅供学习使用,文章中讲述的交叉调整率优化方案TDK-Lambda公司已经申请了专利,受法律保护,请勿侵权!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

舍弗勒以"专注驱动技术的科技公司"为主题亮相IAA MOBILITY 2025(B3馆B40展台) 合并纬湃科技后首次亮相IAA MOBILITY,展示拓展后的汽车产品组合 凭借在软件、...

关键字: 电气 软件 驱动技术 BSP

香港2025年 9月12日 /美通社/ -- 全球领先的互联网社区创建者 - 网龙网络控股有限公司 ("网龙"或"本公司",香港交易所股票代码:777)欣然宣布,其子公司My...

关键字: AI 远程控制 控制技术 BSP

深圳2025年9月11日 /美通社/ -- 2025 年 9 月 10 日,第 26 届中国国际光电博览会(简称 "CIOE 中国光博会")在深圳盛大开幕。本届展会吸引力再创新高,全球超3800家优质...

关键字: 自动化 光电 CIO BSP

天津2025年9月11日 /美通社/ -- 国际能源署(IEA)数据显示,2024 年全球数据中心电力消耗达 415 太瓦时,占全球总用电量的 1.5%,预计到 2030 年,这一数字将飙升至 945 太瓦时,近乎翻番,...

关键字: 模型 AI 数据中心 BSP

北京2025年9月11日 /美通社/ -- 国际9月11日上午,2025年中国国际服务贸易交易会(以下简称"服贸会")—体育赛事经济高质量发展大会现场,北京经济技术开发区工委委员、管委会副主...

关键字: 5G BSP GROUP MOTOR

【2025年9月10日, 德国慕尼黑讯】英飞凌科技股份公司(FSE代码:IFX / OTCQX代码:IFNNY)宣布推出一款适用于AI数据中心与服务器的12 kW高性能电源(PSU)参考设计。该参考设计兼具高效率和高功率...

关键字: AI数据中心 服务器 电源

柏林2025年9月9日 /美通社/ -- 2025年9月5日,纳斯达克上市公司优克联集团(NASDAQ: UCL)旗下全球互联品牌GlocalMe,正式亮相柏林国际消费电子展(IFA 2025),重磅推出融合企...

关键字: LOCAL LM BSP 移动网络

深圳2025年9月9日 /美通社/ -- PART 01活动背景 当技术的锋芒刺穿行业壁垒,万物互联的生态正重塑产业疆域。2025年,物联网产业迈入 "破界创造"与"共生进化" 的裂变时代——AI大模型消融感知边界,...

关键字: BSP 模型 微信 AIOT

"出海无界 商机无限"助力企业构建全球竞争力 深圳2025年9月9日 /美通社/ -- 2025年8月28日, 由领先商业管理媒体世界经理人携手环球资源联合主办、深圳•前海出海e站通协办的...

关键字: 解码 供应链 AI BSP

柏林2025年9月9日 /美通社/ -- 柏林当地时间9月6日,在2025德国柏林国际电子消费品展览会(International Funkausstellung...

关键字: 扫地机器人 耳机 PEN BSP
关闭