当前位置:首页 > 电源 > 功率器件
[导读] O 引言过去的40年中,MOS器件尺寸的持续缩小一直是促进半导体工业发展的动力。人们可以在越来越小的芯片上实现越来越复杂的功能,并且芯片的价格不断下降,使得各种便携式

O 引言

过去的40年中,MOS器件尺寸的持续缩小一直是促进半导体工业发展的动力。人们可以在越来越小的芯片上实现越来越复杂的功能,并且芯片的价格不断下降,使得各种便携式产品如笔记本电脑、笔迹识别仪、语音识别器等相继问世。这些设备大多依靠电池供电,电池的寿命是有限的,而目前的镍镉电池最多能提供的电能只有 26 W/pound。而且,随着芯片集成度的增加,单位面积上消耗的功率也随之增加,这不得不增加为芯片散热的成本。因而,如文献中所述,电路的低功耗已成为电路设计的重要指标。

从已有的研究成果可知,电路中的功率消耗源主要有以下几种:由逻辑转换引起的逻辑门对负载电容充、放电引起的功率消耗;由逻辑门中瞬时短路电流引起的功率消耗;由器件的漏电流引起的消耗,并且每引进一次新的制造技术会导致漏电流20倍的增加,漏电流引起的消耗已经成为功率消耗的主要因素。目前降低功耗的方法主要有:减小电源电压、调整晶体管尺寸、采用并行和流水线的系统结构、利用睡眠模式、采用绝热逻辑电路等。其中,能量回收逻辑就是基于绝热计算发展起来的一种低功耗设计技术。这里简单介绍一种使用单相正弦电源时钟的能量回收逻辑,并用这种原理电路设计了一个两位的数字乘法器电路,与静态CMOS数字乘法器相比,这种能量回收乘法器能够大大降低功率消耗。

1 单相正弦电源时钟能量回收逻辑电路工作原理

以反相器为例说明这种电路的工作原理,如图1所示。M1和M2的连接方式与传统的静态CMOS逻辑电路相似。不同的是电源不再是恒定不变的,而是用一个正弦信号代替,这个信号同时起到同步电路工作的作用,因此又称作电源时钟。M3和M4连接成二极管的形式用来控制充放电的路径。

当输入信号B为逻辑“O”时,M1导通,M2截止。正弦信号正半周时,通过M3和M1向负载电容充电,一旦电容充电到最大值,M3能够阻止电容向输入正弦时钟信号放电,输出保持在高电平不变。当输入信号B为逻辑“1”时,M1截止,M2导通。正弦信号负半周时,负载电容通过M2和M4向输入正弦时钟信号放电,一旦电容放电到最小值,M4能够阻止输入正弦时钟信号向电容充电,输出保持为低电平不变。

2 基于单相能量回收电路的乘法器电路设计

2.1 基于单相能量回收电路的乘法器

两位乘法器能够实现2位二进制数的乘法运算,设A1A0,B1B0为乘数和被乘数,P3P2P1P0为乘法运算得到的积,由卡诺图(见图2)得到两位乘法器的输出逻辑函数表达式分别为:

为了能用基本的与非门、或非门和异或门电路实现乘法器,上式可以通过逻辑运算变换为:

实现电路时,将静态CMOS电路(见图3)构成的与非门、或非门和异或门的电源用图4所示的电源时钟电路代替即可。其中Clk+,Clk-分别接CMOS电路中PMOS和NMOS管的D极和S极。

2.2 仿真结果

在PSpice环境下,分别仿真了用静态CMOS电路和单相能量回收电路构成的两位乘法器电路(见图5和图6),图中只显示了输出4位积的低2位P1P0,其中输入信号 A1A0,B1B0波形见图6。其他参数如下:采用CMOS 1.2μm技术,正弦波峰峰值为2.5 V,直流电压VDD为2.5 V,并假设乘法器的输出端接负载电容为O.1 fF。

从图中可见,用静态CMOS电路构成的乘法器输出比较稳定,输出等于0或VDD,功率消耗为1.51×10-7W。而用单相能量回收电路构成的二位乘法器的输出不够稳定,对噪声信号较为敏感,但是并不影响输出逻辑,功率消耗减小为1.17×10-7W。从节能的角度来看,单相能量回收电路性能更好。

3 结语

本文首先介绍了单相能量回收反相器电路,详细讨论电路的工作原理,同时用PSpice工具仿真了基于静态CMOS电路和单相能量回收电路构成的两位乘法器电路。仿真结果表明本文介绍的单相能量回收电路能够极大地降低电路功耗。今后的工作还应继续优化电路结构,稳定电路的输出状态,增强电路的抗干扰能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

4月30日消息,西安紫光国芯UniIC宣布正式推出全新SSD产品,共有四大系列,包括面向行业应用的高端产品“CTD700”、

关键字: 紫光展锐 芯片

TWSC 2985系列SD6.0存储芯片 国内首颗支持4K LDPC纠错技术 增强纠错、耐久可靠、性能升级

关键字: 德明利 半导体 存储 芯片 国产存储企业

2024年4月11日,中国——意法半导体的ST25R100近距离通信(NFC)读取器芯片独步业界,集先进的技术功能、稳定可靠的通信连接和低廉的成本价格于一身,在大规模制造的消费电子和工控设备内,可以提高非接触式互动功能的...

关键字: 嵌入式 数据读取器 芯片

其最新一代开创性系统集成芯片及配套软件将为4600万辆汽车提供更多安全和便利功能 上海2024年4月17日 /美通社/ -- Mobileye今日宣布,其已向客户交付其最新的EyeQ™6 Lite (EyeQ...

关键字: 芯片 MOBILEYE ADAS 自动驾驶

随着2024年的到来,北斗系统建设已走过栉风沐雨、接续奋斗的30年,几代北斗人也走过了北斗系统建设从无到有,从有源定位到无源定位,从服务中国到服务亚太,再到全球组网的“三步走”发展历程。

关键字: 华大北斗 芯片

微控制单元(Microcontroller Unit;MCU) ,又称单片微型计算机(Single Chip Microcomputer )或者单片机,是一种针对特定应用的控制处理而设计的微处理器芯片,其工作频率(在1M...

关键字: MCU 芯片 半导体

今日凌晨,中国台湾东部的花莲县连续发生地震,最高强度为6.3级,震源深度10公里,据中国地震台网分析,本次地震均为4月3日台湾花莲县海域发生的7.3级地震的余震。中国台湾地区在全球半导体供应链中扮演者重要角色,其10nm...

关键字: 固态硬盘 芯片 存储

在科技飞速发展的今天,电子设备已经成为了我们日常生活中不可或缺的一部分。而在这些电子设备的内部,一个不可或缺的组成部分便是开关电源芯片。作为电源管理集成电路的核心,开关电源芯片在电子设备中发挥着至关重要的作用。本文将深入...

关键字: 开关电源 芯片

开关电源芯片作为电子设备中的重要组成部分,是实现电源转换和管理的核心器件。随着科技的不断进步,开关电源芯片的种类也在不断增加,各具特色,满足了不同设备和应用场景的需求。本文将深入探讨开关电源芯片的种类及其科技应用,带领读...

关键字: 开关电源 芯片

4月17日消息,Intel官方宣布,工程师内部研发了一种新的AI增强工具,可以让系统级芯片设计师原本需要耗费6个星期才能完成的热敏传感器设计,缩短到区区几分钟。

关键字: Intel 芯片 1.8nm
关闭
关闭