当前位置:首页 > 电源 > 功率器件
[导读]1.介绍 反激变换器拓扑在5W到 150W的小功率场合中得到广泛的应用。这个拓扑的重要优点是在变换器的输出端不需要滤波电感,从而节约了成本,减小了体积。在以往一些中文参

1.介绍
反激变换器拓扑在5W到 150W的小功率场合中得到广泛的应用。这个拓扑的重要优点是在变换器的输出端不需要滤波电感,从而节约了成本,减小了体积。在以往一些中文参考资料的叙述中,由于同时涉及电路和磁路的设计,容易造成设计过程中的混乱,反激变换器电路本身的一些特性却没有得到应有的体现。在文献【1】中,介绍了反激变换器的基本工作原理,对不连续模式反激变换器的设计过程,各参数之间的决定关系作了简练而准确的描述。由于电路设计和磁路设计分别介绍,对读者掌握反激变换器的设计有很好的帮助。磁路设计在本文中不涉及,可以参考相关文献。


2.不连续模式反激变换器的基本原理
反激变换器在开关管导通期间,变压器储能,负载电流由输出滤波电容提供。在开关管关断期间,储存在变压器中的能量转换到负载,提供负载电流,同时给输出滤波电容充电,并补偿开关管导通期间损失的能量。
图1a是反激变换器的基本拓扑。图中有两个输出电路,一个主输出和一个从输出。负反馈闭合环路采样主输出电压Vom。Vom的采样值与参考值比较,输出的误差信号放大信号控制Q1的导通时间脉冲,使得Vom的采样值在电网和负载变化时等于参考电压,从而稳定输出电压。从输出跟随主输出得到相应的调节。
电路的工作过程如下:当Q1导通,所有线圈的同名端(带·)相对于非同名端(不带·)是负极性。输出整流二极管D1和D2反向偏置,输出负载电流由输出滤波电容C1和C2提供。
在Q1导通期间,Np上施加了一个固定的电压(Vdc-1)(这里假设开关管的导通压降是1V),并且流过以斜率dI/dt=(Vdc-1)Lp线性上升的电流,这里Lp是原边的磁化电感。在导通时间的最后,原边电流上升到Ip=(Vdc-1)Ton/Lp。这个电流代表电感上储存的能量为
(1)

这里E单位焦耳,Lp单位亨,Ip单位安培
当Q1关断,磁性电感上的电流强制使所有线圈上的极性反向。假设这时没有从次级绕组,只有主次级绕组,由于电感中的电流不能瞬时改变,在关断的瞬时,原边电流转换到次级,幅值为Is=Ip(Np/Nm)。
经过几个周期以后,次级DC电压Vom已经建立。随着Q1关断,Nm上的同名端为正极性,电流从同名端流出,并且线性地下降(图1c),斜率为 dIs/dt=Vom/Ls,其中Ls是次级电感。如果次级电流在下一个导通时间之前下降到0,则储存在原边电感的能量全部释放到负载,称这个电路工作于不连续模式。输入功率表示为在Q1一个导通时间T释放的能量E,那么在这个周期的最后,从Vdc吸收的功率为

另由于Ip=(Vdc-1)Ton/Lp,那么

从(2b)式可以看出,只要保持VdcTon的积为常数,则反馈环保持输出电压为常数。


图1 不连续模式反激变换器。(当Q1导通,所有整流二极管反向偏置,输出电流由输出电容提供。Np相当于一个纯电感,负载电流在Np中线性地建立直到峰值Ip。当Q1关断,原边储存的能量释放到副边,提供负载电流,并补充电容在Q1导通期间损失的能量。如果电流在下一个导通周期开始之前到达0,电路就是不连续的)

3.输出电压和输入电压,导通时间,负载的关系
若变换器的效率为80%,则

从(2b)式可以看出,最大导通时间

发生在最小供电电压,所以

那么,


这样当Vdc或Ro上升时,反馈环会通过减小Ton来调节输出。Vdc或Ro下降时,则增加Ton。

4.电路设计的流程和各参数之间的决定关系

4.1确定原边/副边匝数比
在正确的设计流程中,有很多参数需要确定,首先是选择原边/主副边匝数比Np/Nsm。这个参数决定了在功率开关管上的最大关断电压应力

(不考虑漏感尖峰)。忽略漏感尖峰,在最大DC输入和1V整流压降下,最大开关电压应力是
(4)

假设漏感尖峰为0.3Vdc,在保证开关管相关参数(Vceo,Vcer或Vcev)的最大额定值有大于30%的安全裕量下,

的选择应尽可能低。

4.2确保磁心不饱和,电路保持不连续模式
为了保证磁心不会偏离磁滞环路,导通伏-秒积(图1d中的A1)必须等于复位伏-秒积(图1d中的A2)。假设Q1导通压降和D2正向导通压降均是1V, (5)

这里Tr是复位时间,也是次级电流需要的回复到0的时间,参看图1c。
为了保证电路工作于不连续模式,设置死区时间(图1c中Tdt),以便最大导通时间

(在Vdc最小时发生)加上复位时间Tr时只有整个周期的80%。留出0.2T的裕量应付Ro的意外下降,因为根据(3)式,如果Ro减小,反馈环会增加Ton以保持Vo为常数。
由于误差放大器设计在不连续时可以保持环路稳定,如果电路间歇性地入连续模式,将会发生振荡。振荡发生的过程如下,DC负载电流的增大或者Vdc的减少引起误差放大器增加Ton以保持Vo为常数,参看(3)式。Ton的增加导致死区时间Tdt的减小,甚至次级电流在Q1下一个导通时间开始之前没有下降到 0,这就是连续模式的开始。如果误差放大器没有非常低的带宽来应付这种情况,电路就会发生振荡。为保证电路保持不连续模式,最大导通时间要要满足以下关系


当Np/Nsm已经由(4)式根据确定的

计算出来时,(5)式和(6)式中就只有两个未知数,那么可以从这两个等式得出
(7)

4.3由最小输出电阻和最小DC输入电压确定的原边电感
从(3)式,原边电感为

(8)

4.4开关峰值电流,最大电压应力
如果是双极性三极管,在峰值电流为

时应该有可接受的高增益。这里

由(7)式计算得出,Lp由(8)式计算得出。
如果是MOSFET,应该将从(9)式得出的计算值增大5-10倍作为峰值额定电流,以便它的导通电阻足够低,产生低压降。

4.5原边和副边均方根电流
原边电流是具有峰值Ip(由(9)式计算得出)的三角波。它的均方根值是
(10)

这里Ip和

由(9)式和(7)式给出。
副边电流是峰值为Is=Ip(Np/Ns)的三角波,导通时间为Tr,原边/副边匝数比Np/Ns由(4)式给出,Tr=(T-Ton)。则次级均方根电流为
(11)

知道了均方根电流,就可以确定变压器原边和副边的线径。按500圆密耳/安培计,将上述计算的均方根值乘以500,即得到导线的圆密耳值。

4.6 输出滤波电容的确定
输出滤波电容根据输出电压纹波的要求来确定。必须保证在最大输出电流(Io(max))时电压纹波(△V)仍然在规定范围内

由于在开关管关断的瞬间,副边峰值电流流过输出电容的等效串联电阻Resr,引起电压降落。因此,实际中Co的取值比计算值大。


参考文献
[1]Switching power supply design / Abraham I. Pressmen. New York ; McGraw-Hill, c1998. c1998

(12)

是确定的。 (9)

和 (6)

(3)

(2b) (2a)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在电子电路中,电解电容的纹波电流承受能力直接影响其使用寿命和电路稳定性。准确测试纹波电流不仅能验证电容性能是否达标,也是电路设计可靠性验证的关键环节。以下从测试原理、设备准备、操作步骤到数据解读,全面介绍电解电容纹波电流...

关键字: 电解电容 纹波电流 电路设计

在电子电路设计与实践中,稳压芯片是维持稳定输出电压的关键组件。然而,当我们将两个输出电压不同的稳压芯片的输出脚连接在一起时,会引发一系列复杂的物理现象和潜在风险。这一操作不仅违反了常规的电路设计原则,还可能对电路系统造成...

关键字: 稳压 芯片 电路设计

反激变换器(Flyback Converter),也称为反激式转换器或反激式变换器,是一种广泛应用于交流直流(AC/DC)和直流直流(DC/DC)转换的电力电子器件。

关键字: 反激变换器

在当今电子技术飞速发展的时代,随着电子产品不断向小型化、高性能化迈进,印刷电路板(PCB)的设计变得愈发复杂和精密。过孔,作为 PCB 中连接不同层线路的关键元件,其对信号完整性的影响已成为电路设计中不可忽视的重要因素。...

关键字: 印刷电路板 电路设计 信号

IIC(Inter IC Bus)协议是一种广泛应用于嵌入式系统中的同步半双工通信协议。随着电子设备的复杂性不断增加,高多层电路板设计变得越来越普遍。在高多层电路板中实现可靠的IIC通信,需要综合考虑布线策略、电源设计、...

关键字: 电路板 电路设计

在反激变换器广泛应用于各类电子设备电源系统的当下,漏感能量的存在成为影响其性能与可靠性的关键因素。漏感能量不仅会导致开关管承受过高的电压尖峰,增加开关损耗,还可能引发严重的电磁干扰(EMI)问题,对整个电路系统的稳定性构...

关键字: 反激变换器 漏感能量 电磁干扰

在现代高速、高密度的电路设计领域,电路完整性是确保电子系统可靠运行的关键要素。回路电感作为电路中的一个重要参数,对电路完整性有着多方面的深远影响。从信号传输的准确性到电源系统的稳定性,回路电感在其中扮演着不容忽视的角色。...

关键字: 电子系统 回路电感 电路设计

在现代汽车电子控制系统中,CAN(Controller Area Network,控制器局域网)总线作为一种高效、可靠的通信协议,发挥着举足轻重的作用。它不仅连接着发动机控制单元(ECU)、变速器控制单元、制动系统控制单...

关键字: 车规级CAN总线 电路设计

串联一个二极管,是利用二极管的单向导电的特性,实现了最简单可靠的低成本防反接功能电路。这种低成本方案一般在小电流的场合,类似小玩具等。

关键字: 电路设计 串联

USB 2.0接口以其高速率等优点渐有取代传统ISA及PCI数据总线的趋势,热插拔特性也使其成为各种PC外设的首选接口。

关键字: 数据采集 电路设计
关闭