当前位置:首页 > > 充电吧
[导读]Linus大婶在slashdot上回答一些编程爱好者的提问,其中一个人问他什么样的代码是他所喜好的,大婶表述了自己一些观点之后,举了一个指针的例子,解释了什么才是core low-level cod

Linus大婶在slashdot上回答一些编程爱好者的提问,其中一个人问他什么样的代码是他所喜好的,大婶表述了自己一些观点之后,举了一个指针的例子,解释了什么才是core low-level coding。

下面是Linus的教学原文及翻译——

“At the opposite end of the spectrum, I actually wish more people understood the really core low-level kind of coding. Not big, complex stuff like the lockless name lookup, but simply good use of pointers-to-pointers etc. For example, I’ve seen too many people who delete a singly-linked list entry by keeping track of the “prev” entry, and then to delete the entry, doing something like。(在这段话的最后,我实际上希望更多的人了解什么是真正的核心底层代码。这并不像无锁文件名查询(注:可能是git源码里的设计)那样庞大、复杂,只是仅仅像诸如使用二级指针那样简单的技术。例如,我见过很多人在删除一个单项链表的时候,维护了一个”prev”表项指针,然后删除当前表项,就像这样)”


if(prev)
    prev->next = entry->next;
else
    list_head = entry->next;

and whenever I see code like that, I just go “This person doesn’t understand pointers”. And it’s sadly quite common.(当我看到这样的代码时,我就会想“这个人不了解指针”。令人难过的是这太常见了。)

People who understand pointers just use a “pointer to the entry pointer”, and initialize that with the address of the list_head. And then as they traverse the list, they can remove the entry without using any conditionals, by just doing a “*pp = entry->next”. (了解指针的人会使用链表头的地址来初始化一个“指向节点指针的指针”。当遍历链表的时候,可以不用任何条件判断(注:指prev是否为链表头)就能移除某个节点,只要写)


*pp = entry->next

So there’s lots of pride in doing the small details right. It may not be big and important code, but I do like seeing code where people really thought about the details, and clearly also were thinking about the compiler being able to generate efficient code (rather than hoping that the compiler is so smart that it can make efficient code *despite* the state of the original source code). (纠正细节是令人自豪的事。也许这段代码并非庞大和重要,但我喜欢看那些注重代码细节的人写的代码,也就是清楚地了解如何才能编译出有效代码(而不是寄望于聪明的编译器来产生有效代码,即使是那些原始的汇编代码))。

Linus举了一个单向链表的例子,但给出的代码太短了,一般的人很难搞明白这两个代码后面的含义。正好,有个编程爱好者阅读了这段话,并给出了一个比较完整的代码。他的话我就不翻译了,下面给出代码说明。

如果我们需要写一个remove_if(link*, rm_cond_func*)的函数,也就是传入一个单向链表,和一个自定义的是否删除的函数,然后返回处理后的链接。

这个代码不难,基本上所有的教科书都会提供下面的代码示例,而这种写法也是大公司的面试题标准模板:


typedefstruct node
{
    structnode * next;
    ....
} node;
 
typedefbool (* remove_fn)(node const* v);
 
// Remove all nodes from the supplied list for which the
// supplied remove function returns true.
// Returns the new head of the list.
node * remove_if(node * head, remove_fn rm)
{
    for(node * prev = NULL, * curr = head; curr != NULL; )
    {
        node * constnext = curr->next;
        if(rm(curr))
        {
            if(prev)
                prev->next = next;
            else
                head = next;
            free(curr);
        }
        else
            prev = curr;
        curr = next;
    }
    returnhead;
}

这里remove_fn由调用查提供的一个是否删除当前实体结点的函数指针,其会判断删除条件是否成立。这段代码维护了两个节点指针prev和curr,标准的教科书写法——删除当前结点时,需要一个previous的指针,并且还要这里还需要做一个边界条件的判断——curr是否为链表头。于是,要删除一个节点(不是表头),只要将前一个节点的next指向当前节点的next指向的对象,即下一个节点(即:prev->next = curr->next),然后释放当前节点。

但在Linus看来,这是不懂指针的人的做法。那么,什么是core low-level coding呢?那就是有效地利用二级指针,将其作为管理和操作链表的首要选项。代码如下:


voidremove_if(node ** head, remove_fn rm)
{
    for(node** curr = head; *curr; )
    {
        node * entry = *curr;
        if(rm(entry))
        {
            *curr = entry->next;
            free(entry);
        }
        else
            curr = &entry->next;
    }
}

同上一段代码有何改进呢?我们看到:不需要prev指针了,也不需要再去判断是否为链表头了,但是,curr变成了一个指向指针的指针。这正是这段程序的精妙之处。

让我们来人肉跑一下这个代码,对于——

删除节点是表头的情况,输入参数中传入head的二级指针,在for循环里将其初始化curr,然后entry就是*head(*curr),我们马上删除它,那么第8行就等效于*head = (*head)->next,就是删除表头的实现。删除节点不是表头的情况,对于上面的代码,我们可以看到——

1)(第12行)如果不删除当前结点 —— curr保存的是当前结点next指针的地址。

2)(第5行) entry 保存了 *curr —— 这意味着在下一次循环:entry就是prev->next指针所指向的内存。

3)(第8行)删除结点:*curr = entry->next; —— 于是:prev->next 指向了 entry -> next;

是不是很巧妙?我们可以只用一个二级指针来操作链表,对所有节点都一样。

如果你对上面的代码和描述理解上有困难的话,你可以看看下图的示意:



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭