浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
扫描二维码
随时随地手机看文章
浅谈压缩感知(二十五):压缩感知重构算法之分段正交匹配追踪(StOMP)
主要内容:
StOMP的算法流程StOMP的MATLAB实现一维信号的实验与结果门限参数Ts、测量数M与重构成功概率关系的实验与结果一、StOMP的算法流程
分段正交匹配追踪(Stagewise OMP)也是由OMP改进而来的一种贪心算法,与CoSaMP、SP算法类似,不同之处在于CoSaMP、SP算法在迭代过程中选择的是与信号内积最大的2K或K个原子,而StOMP是通过门限阈值来确定原子。此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的优势(这句话存在疑问)。
StOMP的算法流程:
二、StOMP的MATLAB实现(CS_StOMP.m)
function [ theta ] = CS_StOMP( y,A,S,ts ) % CS_StOMP % Detailed explanation goes here % y = Phi * x % x = Psi * theta % y = Phi*Psi * theta % 令 A = Phi*Psi, 则y=A*theta % S is the maximum number of StOMP iterations to perform % ts is the threshold parameter % 现在已知y和A,求theta % Reference:Donoho D L,Tsaig Y,Drori I,Starck J L.Sparse solution of % underdetermined linear equations by stagewise orthogonal matching % pursuit[J].IEEE Transactions on Information Theory,2012,58(2):1094—1121 if nargin < 4 ts = 2.5; %ts范围[2,3],默认值为2.5 end if nargin < 3 S = 10; %S默认值为10 end [y_rows,y_columns] = size(y); if y_rowsts*sigma); %选出大于阈值的列 Is = union(pos_num,Js); %pos_num与Js并集 if length(pos_num) == length(Is) if ss==1 theta_ls = 0; %防止第1次就跳出导致theta_ls无定义 end break; %如果没有新的列被选中则跳出循环 end %At的行数要大于列数,此为最小二乘的基础(列线性无关) if length(Is)<=M pos_num = Is; %更新列序号集合 At = A(:,pos_num); %将A的这几列组成矩阵At else %At的列数大于行数,列必为线性相关的,At'*At将不可逆 if ss==1 theta_ls = 0; %防止第1次就跳出导致theta_ls无定义 end break; %跳出for循环 end %y=At*theta,以下求theta的最小二乘解(Least Square) theta_ls = (At'*At)^(-1)*At'*y; %最小二乘解 %At*theta_ls是y在At列空间上的正交投影 res = y - At*theta_ls; %更新残差 if norm(res)<1e-6 %Repeat the steps until r=0 break; %跳出for循环 end end theta(pos_num)=theta_ls; %恢复出的theta end
三、一维信号的实验与结果
%压缩感知重构算法测试
clear all;close all;clc;
M = 64; %观测值个数
N = 256; %信号x的长度
K = 12; %信号x的稀疏度
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的
Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
Phi = randn(M,N)/sqrt(M); %测量矩阵为高斯矩阵
A = Phi * Psi; %传感矩阵
y = Phi * x; %得到观测向量y
%% 恢复重构信号x
tic
theta = CS_StOMP(y,A);
x_r = Psi * theta; % x=Psi * theta
toc
%% 绘图
figure;
plot(x_r,'k.-'); %绘出x的恢复信号
hold on;
plot(x,'r'); %绘出原信号x
hold off;
legend('Recovery','Original')
fprintf('n恢复残差:');
norm(x_r-x) %恢复残差四、门限参数ts、测量数M与重构成功概率关系的实验与结果
clear all;close all;clc;
%% 参数配置初始化
CNT = 1000;%对于每组(K,M,N),重复迭代次数
N = 256;%信号x的长度
Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta
ts_set = 2:0.2:3;
K_set = [4,12,20,28,36];%信号x的稀疏度集合
Percentage = zeros(N,length(K_set),length(ts_set));%存储恢复成功概率
%% 主循环,遍历每组(ts,K,M,N)
tic
for tt = 1:length(ts_set)
ts = ts_set(tt);
for kk = 1:length(K_set)
K = K_set(kk);%本次稀疏度
%M没必要全部遍历,每隔5测试一个就可以了
M_set=2*K:5:N;
PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率
for mm = 1:length(M_set)
M = M_set(mm);%本次观测值个数
fprintf('ts=%f,K=%d,M=%dn',ts,K,M);
P = 0;
for cnt = 1:CNT %每个观测值个数均运行CNT次
Index_K = randperm(N);
x = zeros(N,1);
x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的
Phi = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵
A = Phi * Psi;%传感矩阵
y = Phi * x;%得到观测向量y
theta = CS_StOMP(y,A,10,ts);%恢复重构信号theta
x_r = Psi * theta;% x=Psi * theta
if norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功
P = P + 1;
end
end
PercentageK(mm) = P/CNT*100;%计算恢复概率
end
Percentage(1:length(M_set),kk,tt) = PercentageK;
end
end
toc
save StOMPMtoPercentage1000 %运行一次不容易,把变量全部存储下来
%% 绘图
for tt = 1:length(ts_set)
S = ['-ks';'-ko';'-kd';'-kv';'-k*'];
figure;
for kk = 1:length(K_set)
K = K_set(kk);
M_set=2*K:5:N;
L_Mset = length(M_set);
plot(M_set,Percentage(1:L_Mset,kk,tt),S(kk,:));%绘出x的恢复信号
hold on;
end
hold off;
xlim([0 256]);
legend('K=4','K=12','K=20','K=28','K=36');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title(['Percentage of input signals recovered correctly(N=256,ts=',...
num2str(ts_set(tt)),')(Gaussian)']);
end
for kk = 1:length(K_set)
K = K_set(kk);
M_set=2*K:5:N;
L_Mset = length(M_set);
S = ['-ks';'-ko';'-kd';'-kv';'-k*';'-k+'];
figure;
for tt = 1:length(ts_set)
plot(M_set,Percentage(1:L_Mset,kk,tt),S(tt,:));%绘出x的恢复信号
hold on;
end
hold off;
xlim([0 256]);
legend('ts=2.0','ts=2.2','ts=2.4','ts=2.6','ts=2.8','ts=3.0');
xlabel('Number of measurements(M)');
ylabel('Percentage recovered');
title(['Percentage of input signals recovered correctly(N=256,K=',...
num2str(K),')(Gaussian)']);
end1、门限参数ts分别为2.0,2.2,2.4,2.6,2.8,3.0时,不同稀疏信号下,测量值M与重构成功概率的关系:
2、稀疏度为4,12,20,28,36时,不同门限参数ts下,测量值M与重构成功概率的关系:
结论:
通过对比可以看出,总体上讲ts=2.4或ts=2.6时效果较好,较大和较小重构效果都会降低,这里由于没有ts=2.5的情况,但我们推测ts=2.5应该是一个比较好的值,因此一般默认取为2.5即可。





