当前位置:首页 > 芯闻号 > 充电吧
[导读]要理解PC指针,首先就要好好了解LR指针连接寄存器LR(r14):用来保存和恢复PC寄存器的内容,它有两个特殊功能。    (1)保存子程序返回地址。使用BL或BLX时,跳转指令自动把返回地址放入r1

要理解PC指针,首先就要好好了解LR指针

连接寄存器LR(r14):用来保存和恢复PC寄存器的内容,它有两个特殊功能。

    (1)保存子程序返回地址。使用BL或BLX时,跳转指令自动把返回地址放入r14中;子程序通过把r14复制到PC来实现返回,通常用下列指令之一:
                        MOV PC, LR 
                        BX LR

             通常子程序这样写,保证了子程序中还可以调用子程序。
                         stmfd sp!, {lr}
                         ……
                         ldmfd sp!, {pc}

    (2)当异常发生时,异常模式的r14用来保存异常返回地址,将r14如栈可以处理嵌套中断。


程序计数器r15(PC):PC是有读写限制的。当没有超过读取限制的时候,读取的值是指令的地址加上8个字节,由于ARM指令总是以字对齐的,故bit[1:0]总是00。当用str或stm存储PC的时候,偏移量有可能是8或12等其它值。在V3及以下版本中,写入bit[1:0]的值将被忽略,而在V4及以上版本写入r15的bit[1:0]必须为00,否则后果不可预测。


知道PC寄存器和LR寄存器功能以后,再了解一下ARM处理器的三级流水线和多级流水线


从图中可以看出,一条汇编指令的运行有三个步骤,取指、译码、执行,当第一条汇编指令取指完成后,紧接着就是第二条指令的取指,然后第三条...如此嵌套

其实很容易看出,第一条指令:

add r0, r1,#5

取指完成后,PC就指向了第二条指令,此时PC=PC+4

当第一条指令译码完成以后,此时PC=PC+8

所以第一条指令开始执行时,PC值已经加了8

所以必须记住这个前提,在arm中,每次该指令执行时,其实这时的PC值是PC=PC+8

由于此处不是本文重点,更多关于多级流水线和PC为什么是PC+8的详细内容,点此跳转。


接下来谈谈我们在arm汇编时,什么时候需要PC-4, PC-8, PC什么都不减

!记住:PC不是指向你正在运行的指令,而是PC始终指向你要取指的指令的地址


我们以下面uboot中的start.S的最开始的汇编代码为例来进行解释:


00000000:
   0:	ea000014 	b	584:	e59ff014 	ldr	pc, [pc, #20]	; 208:	e59ff014 	ldr	pc, [pc, #20]	; 24c:	e59ff014 	ldr	pc, [pc, #20]	; 2810:	e59ff014 	ldr	pc, [pc, #20]	; 2c14:	e59ff014 	ldr	pc, [pc, #20]	; 3018:	e59ff014 	ldr	pc, [pc, #20]	; 341c:	e59ff014 	ldr	pc, [pc, #20]	; 3800000020:
  20:	00000120 	.word	0x00000120


流水线如表格:


指令物理地址Cycle1Cycle2Cycle3Cycle4Cycle5Cycle60      4取指译码执行   8 取指译码执行  c  取指译码执行 10   取指译码执行14    取指译码18     取指


红色加粗字体代表:实际PC的物理地址(即PC始终指向你要取的指令的地址


指令周期Cycle1取指

PC总是指向将要读取的指令的地址(即我们常说的,指向下一条指令的地址),而当前PC=4,

所以去取物理地址为4对对应的指令

ldr	pc, [pc, #20]

其对应二进制代码为e59ff014。

此处取指完之后,自动更新PC的值,即PC=PC+4(单个指令占4字节,所以加4)=4+4=8

指令周期Cycle2译指

翻译地址为4的指令e59ff014

同时再去取指

PC总是指向将要读取的指令的地址(即我们常说的,指向下一条指令的地址),而当前PC=8,

所以去物理地址为8所对应的指令“ldr pc, [pc, #20]” 其对应二进制代码为e59ff014。

此处取指完之后,自动更新PC的值,即PC=PC+4=8+4=12=0xc

指令周期Cycle3执行(指令)

执行“e59ff014”,即

ldr	pc, [pc, #20]

所对表达的含义,即PC

= PC + 20

= 12 + 20

= 32

= 0x20

此处,只是计算出待会要赋值给PC的值是0x20,这个0x20还只是放在执行单元中内部的缓冲中。

译指

翻译地址为8的指令e59ff014

取指

此步骤由于是和上面a.中的执行同步做的,所以,未受到影响,继续取指,而取指的那一时刻,PC为上一Cycle更新后的值,即PC=0xc,所以是去取物理地址为0xc所对应的指令

ldr	pc, [pc, #20]

对应二进制为e59ff014   此处取指完之后,自动更新PC的值,即PC=PC+4=0xc+4=0x10


用图来总结过程:




再记住:改变PC的值,会导致流水线清空!!!

好了,那我们继续来看什么时候需要PC-4, PC-8, PC什么都不减

这个取决于是在正常程序的跳转还是发生异常:

我先假设当前运行上面地址4所对应的指令,将它称作第一条指令!

------------------------------------------------------------------------------------------------------------------------------------------------------------

正常跳转:

如果是使用BL执行了正常程序的跳转,那么执行这条BL指令时,由于是正常的跳转指令,所以cpu会将下一句的物理地址存放在LR中,那么将8地址存放在LR中),当从子程序跳转回来的时候,那么就需要将保存在LR寄存器中的值恢复给PC寄存器,mov PC, LR     这样的指令返回

------------------------------------------------------------------------------------------------------------------------------------------------------------

异常跳转:

当前执行的是地址4对应的第一条指令,

在分别讲解各种异常之前,有一条总的原则就是:无论发生什么异常(除复位),内核总是会首先将 PC-4 放到LR寄存器中。(PC始终指向你要取指的指令的地址 即:PC = 当前指令物理地址 + 8


IRQ异常发生时,cpu已经自动更新pc值(4+8+4=10),=》LR  = c(10-4),指向的第三条指令,如果不进行减4处理,我们回来将会漏执行第二条指令,所以PC恢复的时候就需要LR减4,所以正常从子程序返回的时候会使用如:

SUBS PC, LR,#4     返回到当前指令的下一条指令

未定义指令异常时,cpu还没有自动更新pc值(4+8=c),=》LR  = 8(c-4)  ;因为该指令未定义,所以返回时就不应该返回到这条未定义指令,而是返回到它的下一条指令,R14中保存的刚好就是下一条指令的地址,所以就不用计算了,直接将R14赋值给PC就行了,即mov PC, LR

预取指令异常时,即cpu还没有自动更新pc值(4+8=c),=》LR  = 8(c-4)  ;出现预取指令异常后,要重新再执行一次这条指令,这也是与其他异常不太一样的地方。,所以PC恢复的时候就需要R14减4,即SUBS PC, LR,#4

数据中止异常,这个异常表示当前存储器的访问不能完成,是在本指令执行完成后才发生的,即cpu已经自动更新pc值(4+8+4=10)值,=》LR  = c(10-4),我们从异常返回时,要重新再执行一次这条指令,所以PC恢复的时候就需要R14减8,即SUBS PC, LR,#8


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

9月2日消息,不造车的华为或将催生出更大的独角兽公司,随着阿维塔和赛力斯的入局,华为引望愈发显得引人瞩目。

关键字: 阿维塔 塞力斯 华为

加利福尼亚州圣克拉拉县2024年8月30日 /美通社/ -- 数字化转型技术解决方案公司Trianz今天宣布,该公司与Amazon Web Services (AWS)签订了...

关键字: AWS AN BSP 数字化

伦敦2024年8月29日 /美通社/ -- 英国汽车技术公司SODA.Auto推出其旗舰产品SODA V,这是全球首款涵盖汽车工程师从创意到认证的所有需求的工具,可用于创建软件定义汽车。 SODA V工具的开发耗时1.5...

关键字: 汽车 人工智能 智能驱动 BSP

北京2024年8月28日 /美通社/ -- 越来越多用户希望企业业务能7×24不间断运行,同时企业却面临越来越多业务中断的风险,如企业系统复杂性的增加,频繁的功能更新和发布等。如何确保业务连续性,提升韧性,成...

关键字: 亚马逊 解密 控制平面 BSP

8月30日消息,据媒体报道,腾讯和网易近期正在缩减他们对日本游戏市场的投资。

关键字: 腾讯 编码器 CPU

8月28日消息,今天上午,2024中国国际大数据产业博览会开幕式在贵阳举行,华为董事、质量流程IT总裁陶景文发表了演讲。

关键字: 华为 12nm EDA 半导体

8月28日消息,在2024中国国际大数据产业博览会上,华为常务董事、华为云CEO张平安发表演讲称,数字世界的话语权最终是由生态的繁荣决定的。

关键字: 华为 12nm 手机 卫星通信

要点: 有效应对环境变化,经营业绩稳中有升 落实提质增效举措,毛利润率延续升势 战略布局成效显著,战新业务引领增长 以科技创新为引领,提升企业核心竞争力 坚持高质量发展策略,塑强核心竞争优势...

关键字: 通信 BSP 电信运营商 数字经济

北京2024年8月27日 /美通社/ -- 8月21日,由中央广播电视总台与中国电影电视技术学会联合牵头组建的NVI技术创新联盟在BIRTV2024超高清全产业链发展研讨会上宣布正式成立。 活动现场 NVI技术创新联...

关键字: VI 传输协议 音频 BSP

北京2024年8月27日 /美通社/ -- 在8月23日举办的2024年长三角生态绿色一体化发展示范区联合招商会上,软通动力信息技术(集团)股份有限公司(以下简称"软通动力")与长三角投资(上海)有限...

关键字: BSP 信息技术
关闭
关闭