当前位置:首页 > > 充电吧
[导读]Alphabet 旗下的 Deepmind,一个在人工智能领域或许称得上是世界领先的公司,去年亏损 5.72 亿美元;在过去的三年中持续亏损,金额超过 10 亿美元。 这意味这什么?人工智能是否正在

Alphabet 旗下的 Deepmind,一个在人工智能领域或许称得上是世界领先的公司,去年亏损 5.72 亿美元;在过去的三年中持续亏损,金额超过 10 亿美元。

这意味这什么?人工智能是否正在走向崩溃?

其实不然。众所周知,搞研究是最为烧钱的;因此,Deepmind 每年都投入大量的资金,金额甚至比之前任何相关项目的金额都要大。 话虽如此,但 DeepMind 亏损的上升幅度仍值得考虑:2016 年为 1.54 亿美元,2017 年为 3.41 亿美元,2018 年为 5.72 亿美元。

这涉及到三个核心问题:DeepMind 是否在科学上走上正轨?从 Alphabet 的角度来看,这种规模的投资是否合理?这种损失将会从整体上影响人工智能吗?

深度强化学习的局限性

关于第一个问题,人们有理由持怀疑态度。DeepMind 一心扑在深度强化学习上,该技术将主要用于识别模式的深度学习与基于奖励信号的强化学习相结合。

2013 年,DeepMind 在一篇激动人心的论文中将这项技术命名为“深度强化学习”,该论文展示了如何训练一个神经网络系统来玩各种 Atari 游戏,比如 Breakout 和 Space Invaders;不得不承认,有时候它们比人类玩得都要好。 这篇论文是一篇工程杰作,大概也是促使 Alphabet 在 2014 年 1 月收购 DeepMind 的主要原因之一。随后,该技术进一步发展,推动了 DeepMind 在围棋和游戏 StarCraft(星际争霸)中取得胜利。

问题就在于,该技术对环境的依赖非常大:在玩 Breakout 时,就连将游戏中的球拍向上移动几个像素这样微小的变化,都会导致游戏性能急剧下降。DeepMind 在星际争霸游戏里的胜利也有着同样的局限—;—;使用特定地图和特定“种族”角色时,其结果优于人类;使用不同地图和不同角色结果较差。如果要更换角色,则要从头开始重新训练系统。

在某种程度上,深度强化学习是一种涡轮增压式的记忆,使用它的系统能够实现一些人们觉得不可思议的目标,但它们本身对自己在做的事情只有肤浅的理解。因此,当前的系统缺乏灵活性,也无法在环境发生变化时进行调整。

深度强化学习还需要大量的数据。比如,AlphaGo 在训练过程中参加了数百万次围棋游戏,这远远超过了一个人想要成为世界级棋手所需要的数量;而且实现这个目标需要巨大规模的计算资源,价格也不菲—;—;据估计,训练 AlphaGo 的成本为 3500 万美元。

不过,这些都是出于经济学的考虑。正如 Rebooting AI (重启人工智能)这本书中所说,真正的问题在于信任。目前,深度强化学习只能在受到严格控制、很少出现意外的环境中进行;将其运行在几千年里都没有出现变化的环境里或许可行,但在现实生活中,人们可能不会想依赖它。

商业方面收效甚微

由于现实生活中像 Deepmind 这样一心专注游戏上的 AI 项目不多,因此,Deepmind 也尚未开展任何关于深度强化学习的大规模商业应用。包括 2014 年收购时支付的 6.5 亿美元,目前 Alphabet 已对 Deepmind 投资约 20 亿美元;相比之下,Deepmind 去年的营收约为 1.25 亿美元。

另外,适用于围棋的 AI 技术,可能不适用于解决其他具有挑战性的问题,比如癌症和清洁能源。当然,这可能只是时间问题—;—;DeepMind 至少从 2013 年开始就致力于深度强化学习,而且科学进步很少能在一夜之间就转化为商业产品。DeepMind 可能最终会找到一种方法,通过深度强化学习来产生更深入、更稳定的结果。

最终,深度强化学习可能被证明像晶体管一样,成为一项彻底改变世界的发明。

虽然 Deepmind 目前的战略不如人们所希望的那么丰富,但它仍是深度强化学习领域的佼佼者;而且,DeepMind 管理严密,资金充足,拥有数百名博士,在游戏和围棋方面又大获成功,正在吸引越来越多的人才。如果人工智能领域的风向发生了变化,DeepMind 转向另一个方向,它仍然能走在前列。

与此同时,从 Alphabet 方面来说,对 Deepmind 的投资并不是一个大赌注;它还在人工智能领域押下了目前正在快速增长的 Google Brain。对于年收入 1000 亿美元、从搜索到广告推荐等核心业务都依赖人工智能的 Alphabet 来说,进行几笔重大投资并不疯狂。

对过度承诺的担忧

最后,DeepMind 在经济方面的表现将如何从总体上影响人工智能,这个问题很难回答。如果炒作超过了实际效果,它可能导致“AI 寒冬”的到来,甚至连支持者都不愿意投资。如果亏损继续以每年约两倍的速度增长,连 Alphabet 也可能被迫放弃 Deepmind,投资者也会重新调整对人工智能的热情。

不仅仅是 DeepMind,许多有望实现的进步还没有真正实现。虽然 Mark Zuckerberg 在 2018 年 4 月向国会做出的承诺,即人工智能将很快解决假新闻问题已经得到了缓和;但承诺的成本从来都不高,对人工智能的热情程度是由最终效果决定的,而不是承诺。

就目前的形式而言,对人工智能进行炒作远比构建人工智能要容易。虽然在广告和语音识别等有限领域已经取得了巨大的进步,但它无疑还有很长的路要走。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭