当前位置:首页 > > 充电吧
[导读]说的usb子系统的IO操作,不得不说usb requestblock,简称urb。事实上,可以打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而urb就可

说的usb子系统的IO操作,不得不说usb requestblock,简称urb。事实上,可以打一个这样的比喻,usb总线就像一条高速公路,货物、人流之类的可以看成是系统与设备交互的数据,而urb就可以看成是交通工具。在一开始对USB规范细节的介绍,我们就说过USB的endpoint有4种不同类型,于是能在这条高速公路上流动的数据也就有四种。但对车是没有要求的,urb可以运载四种数据,不过你要先告诉司机你要运什么,目的地是什么。我们现在就看看structurb的具体内容。它的内容很多,为了不让我的理解误导各位,大家最好还是看一看内核源码的注释,具体内容参见源码树下include/linux/usb.h。

在这里我们重点介绍程序中出现的几个关键字段:

struct usb_device *dev

urb所发送的目标设备。

unsigned int pipe

     一个管道号码,该管道记录了目标设备的端点以及管道的类型。每个管道只有一种类型和一个方向,它与他的目标设备的端点向对应,我们可以通过以下几个函数来获得管道号并设置管道类型:

     unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个控制OUT端点。

     unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个控制IN端点。

     unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个批量OUT端点。

     unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个批量OUT端点。

     unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个中断OUT端点。

     unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个中断OUT端点。

     unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个等时OUT端点。

     unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int endpoint)

         把指定USB设备指定端点设置为一个等时OUT端点。

unsigned int transfer_flags

当不使用DMA时,应该transfer_flags |= URB_NO_TRANSFER_DMA_MAP(按照代码的理解,希望没有错)。

Int status

     当一个urb把数据送到设备时,这个urb会由系统返回给驱动程序,并调用驱动程序的urb完成回调函数处理。这时,status记录了这次数据传输的有关状态,例如传送成功与否。成功的话会是0。

     要能够运货当然首先要有车,所以第一步当然要创建urb:

     struct urb *usb_alloc_urb(int isoc_packets, int mem_flags);

     第一个参数是等时包的数量,如果不是乘载等时包,应该为0,第二个参数与kmalloc的标志相同。

     要释放一个urb可以用:

     void usb_free_urb(struct urb *urb);

     要承载数据,还要告诉司机目的地信息跟要运的货物,对于不同的数据,系统提供了不同的函数,对于中断urb,我们用

void usb_fill_int_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

void *transfer_buffer, int buffer_length,

usb_complete_t complete, void *context, int interval);

     这里要解释一下,transfer_buffer是一要送/收的数据的缓冲,buffer_length是它的长度,complete是urb完成回调函数的入口,context有用户定义,可能会在回调函数中使用的数据,interval就是urb被调度的间隔。

     对于批量urb和控制urb,我们用:

     void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

                            void *transfer_buffer, int buffer_length, usb_complete_t complete,

                            void *context);

void usb_fill_bulk_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,

                            unsigned char* setup_packet,void *transfer_buffer,

int buffer_length, usb_complete_t complete,void *context);

控制包有一个特殊参数setup_packet,它指向即将被发送到端点的设置数据报的数据。

对于等时urb,系统没有专门的fill函数,只能对各urb字段显示赋值。

有了汽车,有了司机,下一步就是要开始运货了,我们可以用下面的函数来提交urb

     int usb_submit_urb(struct urb *urb, int mem_flags);

mem_flags有几种:GFP_ATOMIC、GFP_NOIO、GFP_KERNEL,通常在中断上下文环境我们会用GFP_ATOMIC。

当我们的卡车运货之后,系统会把它调回来,并调用urb完成回调函数,并把这辆车作为函数传递给驱动程序。我们应该在回调函数里面检查status字段,以确定数据的成功传输与否。下面是用urb来传送数据的细节。

     /* initialize the urb properly */

     usb_fill_bulk_urb(urb, dev->udev,

                usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),

                buf, writesize, skel_write_bulk_callback, dev);

     urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

 

     /* send the data out the bulk port */

     retval = usb_submit_urb(urb, GFP_KERNEL);

这里skel_write_bulk_callback就是一个完成回调函数,而他做的主要事情就是检查数据传输状态和释放urb:

     dev = (struct usb_skel *)urb->context;

     /* sync/async unlink faults aren't errors */

     if (urb->status &&

         !(urb->status == -ENOENT ||

           urb->status == -ECONNRESET ||

           urb->status == -ESHUTDOWN)) {

         dbg("%s - nonzero write bulk status received: %d",

             __FUNCTION__, urb->status);

     }

     /* free up our allocated buffer */

     usb_buffer_free(urb->dev, urb->transfer_buffer_length,

              urb->transfer_buffer, urb->transfer_dma);

事实上,如果数据的量不大,那么可以不一定用卡车来运货,系统还提供了一种不用urb的传输方式,而usb-skeleton的读操作正是采用这种方式实现:

     /* do a blocking bulk read to get data from the device */

     retval = usb_bulk_msg(dev->udev,

                    usb_rcvbulkpipe(dev->udev, dev->bulk_in_endpointAddr),

                    dev->bulk_in_buffer,

                    min(dev->bulk_in_size, count),

                    &bytes_read, 10000);

 

     /* if the read was successful, copy the data to userspace */

     if (!retval) {

         if (copy_to_user(buffer, dev->bulk_in_buffer, bytes_read))

              retval = -EFAULT;

         else

              retval = bytes_read;

     }

程序使用了usb_bulk_msg来传送数据,它的原型如下:

     int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,void *data,

int len, int *actual length, int timeout)

     这个函数会阻塞等待数据传输完成或者等到超时,data是输入/输出缓冲,len是它的大小,actual length是实际传送的数据大小,timeout是阻塞超时。

     对于控制数据,系统提供了另外一个函数,他的原型是:

         Int usb_contrl_msg(struct usb_device *dev, unsigned int pipe, __u8 request,

                            __u8 requesttype, __u16 value, __u16 index, void *data,

                            __u16 size, int timeout);

Request是控制消息的USB请求值、requesttype是控制消息的USB请求类型,value是控制消息的USB消息值,index是控制消息的USB消息索引。具体是什么,暂时不是很清楚,希望大家提供说明。

至此,Linux下的USB驱动框架分析基本完成了。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭