当前位置:首页 > > 充电吧
[导读]probe是usb子系统自动调用的一个函数,有USB设备接到硬件集线器时,usb子系统会根据production ID和vendorID的组合或者设备的class、subclass跟protocol的

probe是usb子系统自动调用的一个函数,有USB设备接到硬件集线器时,usb子系统会根据production ID和vendorID的组合或者设备的class、subclass跟protocol的组合来识别设备调用相应驱动程序的probe(探测)函数,对于skeleton来说,就是skel_probe。系统会传递给探测函数一个usb_interface *跟一个struct usb_device_id*作为参数。他们分别是该USB设备的接口描述(一般会是该设备的第0号接口,该接口的默认设置也是第0号设置)跟它的设备ID描述(包括VendorID、Production ID等)。Probe函数比较长,我们分段来分析这个函数:

     dev->udev = usb_get_dev(interface_to_usbdev(interface));

     dev->interface = interface;

在初始化了一些资源之后,我们可以看到第一个关键的函数调用——interface_to_usbdev。他同uo一个usb_interface来得到该接口所在设备的设备描述结构。本来,要得到一个usb_device只要用interface_to_usbdev就够了,但因为要增加对该usb_device的引用计数,我们应该在做一个usb_get_dev的操作,来增加引用计数,并在释放设备时用usb_put_dev来减少引用计数。这里要解释的是,该引用计数值是对该usb_device的计数,并不是对本模块的计数,本模块的计数要由kref来维护。所以,probe一开始就有初始化kref。事实上,kref_init操作不单只初始化kref,还将其置设成1。所以在出错处理代码中有kref_put,它把kref的计数减1,如果kref计数已经为0,那么kref会被释放。Kref_put的第二个参数是一个函数指针,指向一个清理函数。注意,该指针不能位空,或者kfree。该函数会在最后一个对kref的引用释放时被调用(如果我的理解不准确,请指正)。下面是内核源码中的一段注释及代码:

/**

 * kref_put - decrement refcount for object.

 * @kref: object.

 * @release: pointer to the function that will clean up the object when the

 *        last reference to the object is released.

 *        This pointer is required, and it is not acceptable to pass kfree

 *        in as this function.

 *

 * Decrement the refcount, and if 0, call release().

 * Return 1 if the object was removed, otherwise return 0.  Beware, if this

 * function returns 0, you still can not count on the kref from remaining in

 * memory.  Only use the return value if you want to see if the kref is now

 * gone, not present.

 */

int kref_put(struct kref *kref, void (*release)(struct kref *kref))

{

     WARN_ON(release == NULL);

     WARN_ON(release == (void (*)(struct kref *))kfree);

 

     /*

      * if current count is one, we are the last user and can release object

      * right now, avoiding an atomic operation on 'refcount'

      */

     if ((atomic_read(&kref->refcount) == 1) ||

         (atomic_dec_and_test(&kref->refcount))) {

         release(kref);

         return 1;

     }

     return 0;

}

当我们执行打开操作时,我们要增加kref的计数,我们可以用kref_get,来完成。所有对struct kref的操作都有内核代码确保其原子性。

得到了该usb_device之后,我们要对我们自定义的usb_skel各个状态跟资源作初始化。这部分工作的任务主要是向usb_skel注册该usb设备的端点。这里可能要补充以下一些关于usb_interface_descriptor的知识,但因为内核源码对该结构体的注释不多,所以只能靠个人猜测。在一个usb_host_interface结构里面有一个usb_interface_descriptor叫做desc的成员,他应该是用于描述该interface的一些属性,其中bNubEndpoints一个8位(b forbyte)的数字,他代表了该接口的端点数。Probe然后遍历所有的端点,检查他们的类型跟方向,注册到usb_skel中。

     /* set up the endpoint information */

     /* use only the first bulk-in and bulk-out endpoints */

     iface_desc = interface->cur_altsetting;

     for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

         endpoint = &iface_desc->endpoint[i].desc;

 

         if (!dev->bulk_in_endpointAddr &&

             ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)

                       == USB_DIR_IN) &&

             ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

                       == USB_ENDPOINT_XFER_BULK)) {

              /* we found a bulk in endpoint */

              buffer_size = le16_to_cpu(endpoint->wMaxPacketSize);

              dev->bulk_in_size = buffer_size;

              dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;

              dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);

              if (!dev->bulk_in_buffer) {

                   err("Could not allocate bulk_in_buffer");

                   goto error;

              }

         }

 

         if (!dev->bulk_out_endpointAddr &&

             ((endpoint->bEndpointAddress & USB_ENDPOINT_DIR_MASK)

                       == USB_DIR_OUT) &&

             ((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

                       == USB_ENDPOINT_XFER_BULK)) {

              /* we found a bulk out endpoint */

              dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;

         }

     }

     if (!(dev->bulk_in_endpointAddr && dev->bulk_out_endpointAddr)) {

         err("Could not find both bulk-in and bulk-out endpoints");

         goto error;

     }


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭