当前位置:首页 > > 充电吧
[导读]当你网络不通想“ping”一下的时候,你可知道它背后的逻辑吗?

每当我们在调试网络遇到网络不通的情况时,大家都知道去 ping 一下,看一下网络状况。
但你知道「ping」命令后背的逻辑是什么吗?知道它是如何实现的吗?

下面就让我来给大家细细讲解。


一、「ping」命令的作用和原理?

简单来说,「ping」是用来探测本机与网络中另一主机之间是否可达的命令,如果两台主机之间ping不通,则表明这两台主机不能建立起连接。ping是定位网络通不通的一个重要手段。

ping 命令是基于 ICMP 协议来工作的,「 ICMP 」全称为 Internet 控制报文协议( Internet Control Message Protocol)。ping 命令会发送一份ICMP回显请求报文给目标主机,并等待目标主机返回ICMP回显应答。因为ICMP协议会要求目标主机在收到消息之后,必须返回ICMP应答消息给源主机,如果源主机在一定时间内收到了目标主机的应答,则表明两台主机之间网络是可达的。

举一个例子来描述「ping」命令的工作过程:

  1. 假设有两个主机,主机A(192.168.0.1)和主机B(192.168.0.2),现在我们要监测主机A和主机B之间网络是否可达,那么我们在主机A上输入命令:ping 192.168.0.2

  2. 此时,ping命令会在主机A上构建一个 ICMP的请求数据包(数据包里的内容后面再详述),然后 ICMP协议会将这个数据包以及目标IP(192.168.0.2)等信息一同交给IP层协议。

  3. IP层协议得到这些信息后,将源地址(即本机IP)、目标地址(即目标IP:192.168.0.2)、再加上一些其它的控制信息,构建成一个IP数据包。

  4. IP数据包构建完成后,还不够,还需要加上MAC地址,因此,还需要通过ARP映射表找出目标IP所对应的MAC地址。当拿到了目标主机的MAC地址和本机MAC后,一并交给数据链路层,组装成一个数据帧,依据以太网的介质访问规则,将它们传送出出去。

  5. 当主机B收到这个数据帧之后,会首先检查它的目标MAC地址是不是本机,如果是就接收下来处理,接收之后会检查这个数据帧,将数据帧中的IP数据包取出来,交给本机的IP层协议,然后IP层协议检查完之后,再将ICMP数据包取出来交给ICMP协议处理,当这一步也处理完成之后,就会构建一个ICMP应答数据包,回发给主机A

  6. 在一定的时间内,如果主机A收到了应答包,则说明它与主机B之间网络可达,如果没有收到,则说明网络不可达。除了监测是否可达以外,还可以利用应答时间和发起时间之间的差值,计算出数据包的延迟耗时。

通过ping的流程可以发现,ICMP协议是这个过程的基础,是非常重要的,因此下面就把ICMP协议再详细解释一下。

二、什么是「 ICMP 」?

我们知道,ping命令是基于ICMP协议来实现的。那么我们再来看下图,就明白了ICMP协议又是通过IP协议来发送的,即ICMP报文是封装在IP包中。

IP协议是一种无连接的,不可靠的数据包协议,它并不能保证数据一定被送达,那么我们要保证数据送到就需要通过其它模块来协助实现,这里就引入的是ICMP协议。

当传送的IP数据包发送异常的时候,ICMP就会将异常信息封装在包内,然后回传给源主机。

将上图再细拆一下可见:

继续将ICMP协议模块细拆:

由图可知,ICMP数据包由8bit的类型字段和8bit的代码字段以及16bit的校验字段再加上选项数据组成。

ICMP协议大致可分为两类:

  • 查询报文类型

  • 差错报文类型

  1. 查询报文类型:

查询报文主要应用于:ping查询、子网掩码查询、时间戳查询等等。

上面讲到的ping命令的流程其实就对应ICMP协议查询报文类型的一种使用。在主机A构建ICMP请求数据包的时候,其ICMP的类型字段中使用的是 8 (回送请求),当主机B构建ICMP应答包的时候,其ICMP类型字段就使用的是 0 (回送应答),更多类型值参考上表。

对 查询报文类型 的理解可参考一下文章最开始讲的ping流程,这里就不做赘述。

  1. 差错报文类型:

差错报文主要产生于当数据传送发送错误的时候。
它包括:目标不可达(网络不可达、主机不可达、协议不可达、端口不可达、禁止分片等)、超时、参数问题、重定向(网络重定向、主机重定向等)等等。

差错报文通常包含了引起错误的IP数据包的第一个分片的IP首部,加上该分片数据部分的前8个字节。
当传送IP数据包发生错误的时候(例如 主机不可达),ICMP协议就会把错误信息封包,然后传送回源主机,那么源主机就知道该怎么处理了。

那是不是只有遇到错误的时候才能使用 差错报文类型 呢?也不一定。

Traceroute 就是一个例外,Traceroute是用来侦测源主机到目标主机之间所经过路由情况的常用工具。Traceroute 的原理就是利用ICMP的规则,制造一些错误的事件出来,然后根据错误的事件来评估网络路由情况。

具体做法就是:

Traceroute会设置特殊的TTL值,来追踪源主机和目标主机之间的路由数。首先它给目标主机发送一个 TTL=1 的UDP数据包,那么这个数据包一旦在路上遇到一个路由器,TTL就变成了0(TTL规则是每经过一个路由器都会减1),因为TTL=0了,所以路由器就会把这个数据包丢掉,然后产生一个错误类型(超时)的ICMP数据包回发给源主机,也就是差错包。这个时候源主机就拿到了第一个路由节点的IP和相关信息了。

接着,源主机再给目标主机发一个 TTL=2 的UDP数据包,依旧上述流程走一遍,就知道第二个路由节点的IP和耗时情况等信息了。

如此反复进行,Traceroute就可以拿到从主机A到主机B之间所有路由器的信息了。

但是有个问题是,如果数据包到达了目标主机的话,即使目标主机接收到TTL值为1的IP数据包,它也是不会丢弃该数据包的,也不会产生一份超时的ICMP回发数据包的,因为数据包已经达到了目的地嘛。那我们应该怎么认定数据包是否达到了目标主机呢?

Traceroute的方法是在源主机发送UDP数据包给目标主机的时候,会设置一个不可能达到的目标端口号(例如大于30000的端口号),那么当这个数据包真的到达目标主机的时候,目标主机发现没有对应的端口号,因此会产生一份“端口不可达”的错误ICMP报文返回给源主机。

可见Traceroute的原理确实很取巧,很有趣。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

纳祥科技推出太阳能+Type-C双充电自行车前灯方案,方案核心模块包含太阳能板、单片机、三极管、3颗LED灯珠与1200mAh电池,通过低功耗单片机与三极管驱动,支持强光/弱光/爆闪3种模式,高流明远射程,适配多种车型

关键字: 方案开发 电子方案 自行车前灯方案 纳祥科技

慕尼黑2025年9月11日 /美通社/ -- 当地时间9月9日,赛力斯动力在德国慕尼黑国际车展期间举办技术发布与交流会,正式在海外市场推出全新一代赛力斯超级增程、高效发动机和新一代分布式电驱动系统,同时与来自全球的汽车产...

关键字: 慕尼黑 分布式 发动机 新能源汽车

慕尼黑2025年9月11日 /美通社/ -- 高端智能电动汽车品牌问界(AITO)在2025年德国国际汽车及智慧出行博览会(IAA MOBILITY)上,正式发布了其最新全球产品阵容——专为中东市场深度本地化打造的AIT...

关键字: AI 智能驾驶 测试 生态系统

舍弗勒首次为中国头部车企大规模生产高压逆变砖 天津工厂一年内完成量产准备,逆变器模块性能参数显著提升 与合作伙伴罗姆半导体共研尖端碳化硅技术,效率更高、性能更优 模块化可扩展设计使逆变砖易于集成,可广泛...

关键字: 逆变 高压 逆变器 集成

舍弗勒以"专注驱动技术的科技公司"为主题亮相IAA MOBILITY 2025(B3馆B40展台) 合并纬湃科技后首次亮相IAA MOBILITY,展示拓展后的汽车产品组合 凭借在软件、...

关键字: 电气 软件 驱动技术 BSP

拉斯维加斯2025年9月11日 /美通社/ -- 在9月8日至11日举办的RE+ 2025展会上,全球综合储能解决方案供应商德赛电池(Desay Battery)全面展示了其创新成果,并宣布与深圳市华宝新能源股份有限公司...

关键字: 电池 电芯 人工智能 锂电

香港2025年 9月12日 /美通社/ -- 全球领先的互联网社区创建者 - 网龙网络控股有限公司 ("网龙"或"本公司",香港交易所股票代码:777)欣然宣布,其子公司My...

关键字: AI 远程控制 控制技术 BSP

慕尼黑2025年9月12日 /美通社/ -- 慕尼黑当地时间9月10日,在2025德国国际汽车及智慧出行博览会(IAA MOBILITY)上,国际独立第三方检测、检验和认证机...

关键字: 测试 慕尼黑 模型 HUBER

上海2025年9月12日 /美通社/ -- 近日,国际独立第三方检测、检验和认证机构德国莱茵TÜV大中华区(简称"TÜV莱茵")为上海...

关键字: 测试 信息安全 安全管理 开关

广州2025年9月12日 /美通社/ -- 9月11日,由国际独立第三方检测、检验和认证机构德国莱茵TÜV大中华区(简称"TÜV莱茵"...

关键字: 数字化 供应链 控制 电子
关闭