当前位置:首页 > > 充电吧
[导读]目的:在串口上输入一个字符,单板结合接收到后将它的ASCII值+1后,从串口输出。首先设置MPLL,提高系统时钟,令PCLK=50MHz,Uart选择PCLK为时钟源。然后代码复制到SDRAM中之后,

目的:在串口上输入一个字符,单板结合接收到后将它的ASCII值+1后,从串口输出。

首先设置MPLL,提高系统时钟,令PCLK=50MHz,Uart选择PCLK为时钟源。然后代码复制到SDRAM中之后,调用main函数。

uart.lds

SECTIONS {
    . = 0x30000000;/*设置当前运行地址为0x30000000*/
    .text          :   { *(.text) }/*所有输入文件的代码段*/
    .rodata ALIGN(4) : {*(.rodata)} /*ALIGN(4),表示运行地址4字节对齐。*/
    .data ALIGN(4) : { *(.data) }
    .bss ALIGN(4)  : { *(.bss)  *(COMMON) }
}

Makefile

objs := head.o init.o serial.o main.o
# $^ 代表所有的依赖文件。 $@--目标文件,$ uart.dis  # -D:反汇编所有段 -m arm:指定反汇编文件使用arm架构

%.o:%.c
    arm-linux-gcc -Wall -O2 -c -o $@ $< #-Wall:打开警告信息 -O2:2级优化(常用) -c:只编译不连接

%.o:%.S
    arm-linux-gcc -Wall -O2 -c -o $@ $<

clean:
    rm -f uart.bin uart_elf uart.dis *.o

head.S

@******************************************************************************
@ File:head.S
@ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行
@******************************************************************************       

.extern     main
.text 
.global _start 
_start:
Reset:                  
    ldr sp, =4096           @ 设置栈指针,以下都是C函数,调用前需要设好栈
    bl  disable_watch_dog   @ 关闭WATCHDOG,否则CPU会不断重启
    @ bl是位置无关码,相当于:PCnew = PC + 偏移 = (4+8) + 0x28 = 0x34
    @ 偏移值编译器算的,通过反汇编文件可查看
    bl  clock_init          @ 设置MPLL,改变FCLK、HCLK、PCLK
    bl  memsetup            @ 设置存储控制器以使用SDRAM
    bl  copy_steppingstone_to_sdram     @ 复制代码到SDRAM中
    ldr pc, =on_sdram                   @ 跳到SDRAM中继续执行
on_sdram:
    ldr sp, =0x34000000     @ 设置栈指针
    ldr lr, =halt_loop      @ 设置返回地址
    ldr pc, =main           @ 调用main函数
halt_loop:
    b   halt_loop

init.c

/*
 * init.c: 进行一些初始化
 */ 

#include "s3c24xx.h"

void disable_watch_dog(void);
void clock_init(void);
void memsetup(void);
void copy_steppingstone_to_sdram(void);

/*
 * 关闭WATCHDOG,否则CPU会不断重启
 */
void disable_watch_dog(void)
{
    WTCON = 0;  // 关闭WATCHDOG很简单,往这个寄存器写0即可
}

#define S3C2410_MPLL_200MHZ     ((0x5c<<12)|(0x04<<4)|(0x00))
#define S3C2440_MPLL_200MHZ     ((0x5c<<12)|(0x01<<4)|(0x02))
/*
 * 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV
 * 有如下计算公式:
 *  S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s)
 *  S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s)
 *  其中: m = MDIV + 8, p = PDIV + 2, s = SDIV
 * 对于本开发板,Fin = 12MHz
 * 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:2:4,
 * FCLK=200MHz,HCLK=100MHz,PCLK=50MHz
 */
void clock_init(void)
{
    // LOCKTIME = 0x00ffffff;   // 使用默认值即可
    CLKDIVN  = 0x03;            // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1

    /* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */
__asm__(
    "mrc    p15, 0, r1, c1, c0, 0n"        /* 读出控制寄存器 */ 
    "orr    r1, r1, #0xc0000000n"          /* 设置为“asynchronous bus mode” */
    "mcr    p15, 0, r1, c1, c0, 0n"        /* 写入控制寄存器 */
    );

    /* 判断是S3C2410还是S3C2440 */
    if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
    {
        MPLLCON = S3C2410_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
    }
    else
    {
        MPLLCON = S3C2440_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
    }       
}

/*
 * 设置存储控制器以使用SDRAM
 */
void memsetup(void)
{
    volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE;

    /* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值
     * 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到
     * SDRAM之前就可以在steppingstone中运行
     */
    /* 存储控制器13个寄存器的值 */
    p[0] = 0x22011110;     //BWSCON
    p[1] = 0x00000700;     //BANKCON0
    p[2] = 0x00000700;     //BANKCON1
    p[3] = 0x00000700;     //BANKCON2
    p[4] = 0x00000700;     //BANKCON3  
    p[5] = 0x00000700;     //BANKCON4
    p[6] = 0x00000700;     //BANKCON5
    p[7] = 0x00018005;     //BANKCON6
    p[8] = 0x00018005;     //BANKCON7

                                            /* REFRESH,
                                             * HCLK=12MHz:  0x008C07A3,
                                             * HCLK=100MHz: 0x008C04F4
                                             */ 
    p[9]  = 0x008C04F4;
    p[10] = 0x000000B1;     //BANKSIZE
    p[11] = 0x00000030;     //MRSRB6
    p[12] = 0x00000030;     //MRSRB7
}

void copy_steppingstone_to_sdram(void)
{
    unsigned int *pdwSrc  = (unsigned int *)0;
    unsigned int *pdwDest = (unsigned int *)0x30000000;

    while (pdwSrc < (unsigned int *)4096)
    {
        *pdwDest = *pdwSrc;
        pdwDest++;
        pdwSrc++;
    }
}

serial.c

#include "s3c24xx.h"
#include "serial.h"

#define TXD0READY   (1<= '0' && c = 'a' && c = 'A' && c <= 'Z')
        return 1;       
    else
        return 0;
}

main.c

#include "serial.h"

int main()
{
    unsigned char c;
    uart0_init();   // 波特率115200,8N1(8个数据位,无校验位,1个停止位)

    while(1)
    {
        // 从串口接收数据后,判断其是否数字或子母,若是则加1后输出
        c = getc();
        if (isDigit(c) || isLetter(c))
            putc(c+1);
    }

    return 0;
}

serial.h

void uart0_init(void);
void putc(unsigned char c);
unsigned char getc(void);
int isDigit(unsigned char c);
int isLetter(unsigned char c);

s3c24xx.h

/* WOTCH DOG register */
#define     WTCON           (*(volatile unsigned long *)0x53000000)

/* SDRAM regisers */
#define     MEM_CTL_BASE    0x48000000
#define     SDRAM_BASE      0x30000000

/* NAND Flash registers */
#define NFCONF              (*(volatile unsigned int  *)0x4e000000)
#define NFCMD               (*(volatile unsigned char *)0x4e000004)
#define NFADDR              (*(volatile unsigned char *)0x4e000008)
#define NFDATA              (*(volatile unsigned char *)0x4e00000c)
#define NFSTAT              (*(volatile unsigned char *)0x4e000010)

/*GPIO registers*/
#define GPBCON              (*(volatile unsigned long *)0x56000010)
#define GPBDAT              (*(volatile unsigned long *)0x56000014)

#define GPFCON              (*(volatile unsigned long *)0x56000050)
#define GPFDAT              (*(volatile unsigned long *)0x56000054)
#define GPFUP               (*(volatile unsigned long *)0x56000058)

#define GPGCON              (*(volatile unsigned long *)0x56000060)
#define GPGDAT              (*(volatile unsigned long *)0x56000064)
#define GPGUP               (*(volatile unsigned long *)0x56000068)

#define GPHCON              (*(volatile unsigned long *)0x56000070)
#define GPHDAT              (*(volatile unsigned long *)0x56000074)
#define GPHUP               (*(volatile unsigned long *)0x56000078)



/*UART registers*/
#define ULCON0              (*(volatile unsigned long *)0x50000000)
#define UCON0               (*(volatile unsigned long *)0x50000004)
#define UFCON0              (*(volatile unsigned long *)0x50000008)
#define UMCON0              (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0            (*(volatile unsigned long *)0x50000010)
#define UTXH0               (*(volatile unsigned char *)0x50000020)
#define URXH0               (*(volatile unsigned char *)0x50000024)
#define UBRDIV0             (*(volatile unsigned long *)0x50000028)


/*interrupt registes*/
#define SRCPND              (*(volatile unsigned long *)0x4A000000)
#define INTMOD              (*(volatile unsigned long *)0x4A000004)
#define INTMSK              (*(volatile unsigned long *)0x4A000008)
#define PRIORITY            (*(volatile unsigned long *)0x4A00000c)
#define INTPND              (*(volatile unsigned long *)0x4A000010)
#define INTOFFSET           (*(volatile unsigned long *)0x4A000014)
#define SUBSRCPND           (*(volatile unsigned long *)0x4A000018)
#define INTSUBMSK           (*(volatile unsigned long *)0x4A00001c)

/*external interrupt registers*/
#define EINTMASK            (*(volatile unsigned long *)0x560000a4)
#define EINTPEND            (*(volatile unsigned long *)0x560000a8)

/*clock registers*/
#define LOCKTIME        (*(volatile unsigned long *)0x4c000000)
#define MPLLCON     (*(volatile unsigned long *)0x4c000004)
#define UPLLCON     (*(volatile unsigned long *)0x4c000008)
#define CLKCON      (*(volatile unsigned long *)0x4c00000c)
#define CLKSLOW     (*(volatile unsigned long *)0x4c000010)
#define CLKDIVN     (*(volatile unsigned long *)0x4c000014)


/*PWM & Timer registers*/
#define TCFG0       (*(volatile unsigned long *)0x51000000)
#define TCFG1       (*(volatile unsigned long *)0x51000004)
#define TCON        (*(volatile unsigned long *)0x51000008)
#define TCNTB0      (*(volatile unsigned long *)0x5100000c)
#define TCMPB0      (*(volatile unsigned long *)0x51000010)
#define TCNTO0      (*(volatile unsigned long *)0x51000014)

#define GSTATUS1    (*(volatile unsigned long *)0x560000B0)

[S3C2440链接脚本与位置无关码分析]

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭