当前位置:首页 > > 充电吧
[导读]从Nervana的历史说起首先,我们看看 英特尔 与Nervana之间的故事。在被英特尔收购之前,Nervana声称其产品性能将比GPU高至少10倍。然后发生了一件有趣的事,NVIDIA的Tensor

从Nervana的历史说起

首先,我们看看 英特尔 与Nervana之间的故事。在被英特尔收购之前,Nervana声称其产品性能将比GPU高至少10倍。然后发生了一件有趣的事,NVIDIA的TensorCores让所有人感到惊讶,因为TensorCores的性能不是Pascal的2倍,而是5倍。然后NVIDIA用NVSwitch再将其性能翻倍,这使得它能够实现惊人的高性能(售价40万美元,非常昂贵)8 GPU DGX-2服务器,它的性能击败了大多数(如果不是全部)竞争对手。

与此同时,NVIDIA CuDNN库和驱动程序的性能提升了大约一倍。它还构建了基于GPU的云,让GPU的使用非常简单,只需点击并下载大约30个深度学习和工作负载的优化软件堆栈容器即可。所以,正如前面文章提到的那样,英特尔的10倍性能优势已经消失,Nervana不得不重新设计,英特尔承诺将在2019年底推出新芯片。英伟达基本证明了拥有扎实基础的10000多名工程师可以超越50名顶级的工程师(雷锋网注,Nervana被收购时拥有50人的团队)。对此没人应该感到惊讶,对吧?

10000名工程师团队的优势

进入到2019年,竞争对手再次声称他们研发中的芯片有超越英伟达GPU 10甚至100倍的性能优势。需要注意的是,NVIDIA拥有规模达10000名工程师的团队,在全球与顶尖研究人员和最终用户建立协作关系。现在,他们正在为NVIDIA的下一代7nm芯片寻找最佳设计,在我看来,这将是英伟达的产品从“带有AI的GPU芯片”转变为“带有GPU的AI芯片”的转变。

图1:NVIDIA的DGX-2超级计算机一体机可在NVSwitch上互连的16个V100 GPU上提供2 peta-ops的AI性能

NVIDIA工程师可以为下一代产品增加多少“沙子”(逻辑区域)?虽然以下分析很简单,但对于寻找关键问题的答案是有用的。

让我们从具有出色性能的ASIC—— 谷歌 TPU开始,我看到有分析师估计每个TPU芯片大约集成了20-25亿个晶体管。Volta V100在12nm制造工艺中拥有大约210亿个晶体管,它是台积电可以制造的最大芯片。随着NVIDIA使用的制造工艺从12nm变为7nm,芯片可以包含大约1.96(1.4x1.4)的晶体管。因此,从理论上讲,如果NVIDIA没有添加图形逻辑单元(不可否认),它将拥有另外200亿个晶体管,这大约是TPU逻辑量的十倍。假设逻辑差2倍。在这种情况下,NVIDIA工程师仍然有5倍的逻辑单元用于AI功能。现在,NVIDIA可能全力以赴提升性能,而非降低成本或功耗。

在训练市场,这就是用户需要的——更短的训练时间。关于NVIDIA可能会做哪些改良有很多观点,包括片上内存或处理器中更多的TensorCores。

我的观点是,NVIDIA毫无疑问拥有可用于芯片创新的储备,就像TensorCores一样。我采访过许多AI芯片初创公司,但我最尊重的那些人告诉我不要低估NVIDIA,也不要认为NVIDIA被锁在GPU的思维中。NVIDA DLA和Xavier,这两个ASIC和SoC,证明了NVIDIA可以构建各种加速器,而不仅仅是GPU。因此,许多这些创业公司的CEO决定不用NVIDIA的方式,而是首先进入推理市场。

我认为NVIDIA在训练市场的劣势不会长期存在,它现在的问题可能是芯片成本高,但对于AI训练,客户愿意付出代价。此外,在推理市场,NVIDIA的Xavier是令人印象深刻的芯片。

深度学习寒武纪爆炸有利于可编程性

让我们回到寒武纪爆炸的想法。NVIDIA指出我们还处于AI算法研究的早期阶段。比如用于图像处理的卷积神经网络的ASIC可能(并且几乎肯定会)对于其它网络比如GAN,RNN或尚未发明的神经网络表现就会非常糟糕。

不过,如果NVIDIA能够解决急待解决的内存墙问题,GPU的可编程性再加上NVIDIA工程师共同构成的生态系统,GPU应该可以相当快地适应一种新的神经网络处理形式。NVIDIA已经通过NVLINK创建8个GPU和256GB高带宽(HBM)内存网络,以极高的价格为代价解决内存问题。我们不得不等待下一代GPU,以了解它是否以及如何解决延迟和带宽问题,这将需要大约10倍HBM性能的内存。

推理战争

边缘和数据中心推理市场需求多样,并且有望实现快速增长,但我怀疑的是,大众推理市场是否会成为一个特别具有吸引力的市场。毕竟,随着越来越多公司关注和抢占这一市场,产品的最终利润率可能相当薄弱。

现在,一些推理很简单,但有些推理却非常困难。后者的市场将保持较高的利润率,因为只有配备CPU的复杂SoC(比如Nervana)、GPU、DSP和ASIC等具备并行处理能力的处理器才能为自动驾驶等提供所需的性能。

任职于英特尔的Naveen Rao最近在Twitter上发布的消息透露, Nervana推理处理器可能是基于10nm的 SoC,集成Ice Lake CPU内核。NVIDIA已经引领了这种方法,比如用于自动驾驶的Xavier SOC。 Xilinx 也采用了类似的方法,今年晚些时候,它的Versal将推出。想要用这样的方式的任何创业公司都需要具备两个特性:1)非常高的能耗比,2)创新的产品路线图,这将使他们能取得领先。

结论

总之,我将强调以下内容:

1.  人工智能的未来需要专用芯片,专用芯片的市场将变得巨大。

2.  世界上最大的芯片公司希望在未来的AI芯片战争中获胜。虽然英特尔正在追赶,但不要低估它能做些什么。

3.  有很多资金充足的初创公司,其中一些会取得成功。如果你想投资一家,请确保他们不会对NVIDIA的实力不屑一顾。

4.  未来5年,中国将在很大程度上摆脱美国的人工智能技术。

5. NVIDIA拥有超过10000名工程师,其下一代为AI设计的高端GPU可能会给我们带来惊喜。

6. 推理芯片市场将快速增长,并且在特定应用领域也有市场空间。FPGA,特别是Xilinx的下一代产品可会在这一领域发挥重要作用。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭