当前位置:首页 > > 充电吧
[导读]今天回顾之前写过的一些程序,发现了当时一个比较有意思的修改记录,想了会才回忆起当时的具体意图,记录下来备忘,也分享给看到的朋友们。案例是以STM32f107芯片为主控的一个环境污染物监测设备,在里面用

今天回顾之前写过的一些程序,发现了当时一个比较有意思的修改记录,想了会才回忆起当时的具体意图,记录下来备忘,也分享给看到的朋友们。

案例是以STM32f107芯片为主控的一个环境污染物监测设备,在里面用到485通讯,因485芯片需要通过控制管脚设置发送和接受状态,所以就要求对UART的控制要有足够的精准度,否则会发生发不出去或收不回来的情况,尤其是在做信息交互的时候,于是用到了中断。

在平常的UART应用中,使用中断的话,大多使用TXE(发送寄存器空中断)的方式来进行发送管理,因为平常一般不涉及通道发送接收状态的设置,所以这种方式可以最大效率的利用UART,只要发送寄存器空闲,就可以立刻发送数据出去,也是网上众多例程通用的方法。


    if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET)
    {
        if(size_Usart1_send <= cnt_Usart1_send)
        {
            // Disable the USART1 Transmit Complete interrupt
            USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
        }
        else
        {
            flg_Usart1_send_going = TRUE;
            USART_SendData(USART1, (uint16_t)Usart1_TxBuf[cnt_Usart1_send]);
            cnt_Usart1_send++;
        }
        // Clear interrupt flag
        USART_ClearITPendingBit(USART1, USART_IT_TXE);
    }


但在案例的应用中,涉及到了485通道收发控制,就必须要求在所有数据发送完之后将控制管脚置位,来接收从机的应答。这个时机必需精准,置位早了会导致数据无法发送完全,置位晚了又会导致接收数据不完全(应答的前面的字节丢失)。因此肯定不能在TXE中断中进行判断置位,因为TXE(发送寄存器空中断)发生的时机其实是单片机将发送寄存器的数据BUF完全转移至发送数列中去的时机,并非发送完成的时机,如果这时就将管脚置位的话,必然导致最后一个字节的最后几位以及校验位停止位这一部分的数据不能正常发送,也就是置位早了。


所以经过考虑,打开了TC(发送完成中断)来对数据完全发送完毕进行侦测,完全发送完毕后进行置位。


    if(USART_GetITStatus(USART1, USART_IT_TXE) != RESET)
    {
        if(size_Usart1_send <= cnt_Usart1_send)
        {
            // Disable the USART1 Transmit Complete interrupt
            USART_ITConfig(USART1, USART_IT_TXE, DISABLE);
        }
        else
        {
            flg_Usart1_send_going = TRUE;
            USART_SendData(USART1, (uint16_t)Usart1_TxBuf[cnt_Usart1_send]);
            cnt_Usart1_send++;
        }
        // Clear interrupt flag
        USART_ClearITPendingBit(USART1, USART_IT_TXE);
    }
    if(USART_GetITStatus(USART1, USART_IT_TC) != RESET)
    {
        if(size_Usart1_send <= cnt_Usart1_send)
        {
            flg_Usart1_send_going = FALSE;
            flg_Usart1_send_over = TRUE;
            cnt_Usart1_send = 0;
        }
        // Clear interrupt flag
        USART_ClearITPendingBit(USART1, USART_IT_TC);
    }

但在实际测试中发现,这样的结构并不能解决问题。


经过跟踪测试发现,是在通信进程中,TXE和TC同属于UART中断,当中断发生时,必需从中断入口跳转至UART中断处理函数,然后才能根据TXE和TC的状态位来分析判断当前中断是由TXE产生的还是TC产生的。而且,由于TXE和TC之间是前后循环发生的(例如:字节1 TXE→字节1 TC →字节2 TXE→字节2 TC ...),所以当程序进入到中断处理函数中,有可能会发现TXE和TC(上一个字节的发送完成)状态位都是置位的,这就会导致当发送到最后一个字节时,程序误以为已经发送完毕而直接对485通道进行转换,使最后一个字节数据无法发出的问题。

当时因为赶进度,没有再做进一步的探索,如将TXE和TC的处理顺序掉转,是否能解决问题,而是采取了更加稳妥的方式,关闭TXE中断,使用TC中断来作为发射下一个字节数据的判断依据,牺牲了一点效率,但保证了程序的稳定性。


    if(USART_GetITStatus(USART1, USART_IT_TC) != RESET)
    {
        if(size_Usart1_send <= cnt_Usart1_send)
        {
            flg_Usart1_send_going = RESET;
            flg_Usart1_send_over = SET;
            cnt_Usart1_send = 0;
            size_Usart1_send = 0;
            // Clear interrupt flag
            USART_ClearITPendingBit(USART1, USART_IT_TC);
        }
        else
        {
            flg_Usart1_send_going = SET;
            USART_SendData(USART1, (uint16_t)Usart1_TxBuf[cnt_Usart1_send]);
            cnt_Usart1_send++;
        }
    }


今天在回顾这段程序时,已然忘了当初所针对的问题,直觉的认为用TXE会提升一定的效率,经过回忆才算想起来为什么这么做,因此记录下来,省得后面再忘了。


回头有时间,应该再去做一下测试,将上面TC和TXE的处理顺序掉转,看能否再进一步的把效率提高。

===========================================================================================================================

经过测试,将TC和TXE的处理顺序掉转,程序运行测试OK,这样就能够进一步提高发送效率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭