当前位置:首页 > > 充电吧
[导读]计算几何是算法竞赛的一大块,而叉积是计算机和的基础。首先叉积是计算说向量之间的叉积,那么我们可以这样定义向量,以及向量的运算符重载。叉积求面积: (b.x - a.x) * (c.y - a.y) -

计算几何是算法竞赛的一大块,而叉积是计算机和的基础。

首先叉积是计算说向量之间的叉积,那么我们可以这样定义向量,以及向量的运算符重载。

叉积求面积: (b.x - a.x) * (c.y - a.y) - (b.y - a.y)*(c.x - a.x)


[cpp] view plaincopyprint? struct Point   {       double x,y;       Point(double x=0,double y=0):x(x),y(y) {}   };   typedef Point Vector;   Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }   Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }   Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }   Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); }      bool operator < (const Point& a,const Point& b)   {       return a.x<b.x || (a.x==b.x && a.y<b.y);   }   int dcmp(double x)  //   {       if(fabs(x)<esp) return 0;       else return x<0?-1:1;   }   bool operator == (const Point& a,const Point& b)   {       return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y)==0;   }  



首先在二维坐标下介绍一些定义:

点:A(x1,y1),B(x2,y2)

向量:向量AB=( x2 - x1 , y2 - y1 )= ( x ,  y );

向量的模 |AB| = sqrt ( x*x+y*y );


向量的点积: 结果为 x1*x2 + y1*y2。

点积的结果是一个数值。

点积的集合意义:我们以向量 a 向向量 b 做垂线,则 | a | * cos(a,b)为 a 在向量 b 上的投影,即点积是一个向量在另一个向量上的投影乘以另一个向量。且满足交换律

应用:可以根据集合意义求两向量的夹角,cos(a,b) =( 向量a * 向量b ) / (| a | * | b |) =  x1*x2 + y1*y2 / (| a | * | b |)



向量的叉积: 结果为 x1*y2-x2*y1

叉积的结果也是一个向量,是垂直于向量a,b所形成的平面,如果看成三维坐标的话是在 z 轴上,上面结果是它的模。

方向判定:右手定则,(右手半握,大拇指垂直向上,四指右向量a握向b,大拇指的方向就是叉积的方向)

叉积的集合意义:1:其结果是a和b为相邻边形成平行四边形的面积。

2:结果有正有负,有sin(a,b)可知和其夹角有关,夹角大于180°为负值。

3:叉积不满足交换律

应用:

1:通过结果的正负判断两矢量之间的顺逆时针关系

若 a x b > 0表示a在b的顺时针方向上

若 a x b < 0表示a在b的逆时针方向上

若 a x b == 0表示a在b共线,但不确定方向是否相同


2:判断折线拐向,可转化为判断第三点在前两的形成直线的顺逆时针方向,然后判断拐向。

3:判断一个点在一条直线的那一侧,同样上面的方法。

4:判断点是否在线段上,可利用叉乘首先判断是否共线,然后在判断是否在其上。

5:判断两条直线是否想交(跨立实验)

根据判断点在直线那一侧我们可以判断一个线段的上的两点分别在另一个线段的两侧,当然这是不够的,因为我们画图发现这样只能够让直线想交,而不是线段,所以我们还要对另一条线段也进行相同的判断就ok。


代码:


[cpp] view plaincopyprint? ///计算点积,及向量长度,及向量夹角   double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; }   double Length(Vector A) { return sqrt(Dot(A,A)); }   double Angle(Vector A,Vector B) { return acos(Dot(A,B))/Length(A)/Length(B); }   //计算叉积,向量逆时针旋转,两线段是否想交   double Cross(Vector A,Vector B) { return (A.x*B.y-A.y*B.x); }   double Area2(Vector A,Vector B,Vector C)  { return Cross(B-A,C-A); }   Vector Rotate(Vector A,double rad)   {       return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));   }   bool Converxline(Vector A,Vector B,Vector C,Vector D)   {       //共线或平行       if((Area2(A,B,C)==0&&Area2(A,B,D)==0) || Area2(A,B,C)*Area2(A,B,D)>0||Area2(C,D,A)*Area2(C,D,B)>0)           return false;       else           return true;   }

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭