当前位置:首页 > > 充电吧
[导读]什么是CHS寻址很久以前, 硬盘的容量还非常小的时候,人们采用与软盘类似的结构生产硬盘。也就是硬盘盘片的每一条磁道都具有相同的扇区数。由此产生了所谓的CSH 3D参数 (Disk Geometry)。

什么是CHS寻址

很久以前, 硬盘的容量还非常小的时候,人们采用与软盘类似的结构生产硬盘。也就是硬盘盘片的每一条磁道都具有相同的扇区数。由此产生了所谓的CSH 3D参数 (Disk Geometry)。即磁头数(Heads),柱面数(Cylinders),扇区数(Sectors),以及相应CHS寻址方式。


CHS寻址模式将硬盘划分为磁头(Heads)、柱面(Cylinder)、扇区(Sector)。


磁头(Heads):每张磁片的正反两面各有一个磁头,一个磁头对应一张磁片的一个面。因此,用第几磁 头就可以表示数据在哪个磁面。


柱面(Cylinder):所有磁片中半径相同的同心磁道构成“柱面",意思是这一系列的磁道垂直叠在一起,就形成一个柱面的形状。简单地理解,柱面数=磁道数。


扇区(Sector):将磁道划分为若干个小的区段,就是扇区。虽然很小,但实际是一个扇子的形状,故称为扇区。每个扇区的容量为512字节。


下面的图可能能更好的帮助理解:


CHS寻址的最大容量


CHS寻址方式的容量由CHS三个参数决定:


磁头数最大为255 (用 8 个二进制位存储)。从0开始编号。

柱面数最大为1023(用 10 个二进制位存储)。从0开始编号。

扇区数最大数 63(用 6个二进制位存储)。从1始编号。

所以CHS寻址方式的最大寻址范围为:

255 * 1023 * 63 * 512 / 1048576 = 7.837 GB ( 1M =1048576 Bytes )


或硬盘厂商常用的单位:

255 * 1023 * 63 * 512 / 1000000 = 8.414 GB ( 1M =1000000 Bytes )


CHS寻址的缺点


显然,由于要求每个磁道的扇区数相等,而外道的周长要大于内道,所以外道的记录密度要远低于内道,不仅造成了硬盘空间的浪费,也限制了硬盘的容量。为了解决这一问题,进一步提高硬盘容量,人们改用等密度结构生产硬盘。也就是说,外圈磁道的扇区比内圈磁道多,采用这种结构后,硬盘不再具有实际的CHS参数,寻址方式也改为线性寻址,即以扇区为单位进行寻址。

但一些古老的软件仍然使用CHS寻址方式(如使用BIOSInt13H接口的软件),为了兼容这样的程序,在硬盘控制器内部安装了一个地址翻译器,可以通过它将老式CHS参数翻译成新的线性参数。

 

LBA(Logical Block Addressing)逻辑块寻址模式。在 LBA 模式下,我们知道硬盘上的一个数据区域由它所在的磁头、柱面(也就是磁道)和扇区所唯一确定。早期系统就是直接使用磁头柱面和扇区来对硬盘进行寻址(这称 为CHS寻址),这需要分别存储每个区域的三个参数(这称为3D参数),使用时再分别读取三个参数,然后在送到磁盘控制器去执行。由于系统用8b来存储磁 头地址,用10b来存储柱面地址,用6b来存储扇区地址,而一个扇区共有512B,这样使用CHS寻址一块硬盘最大容量为256 * 1024 * 63 * 512B = 8064 MB(1MB = 1048576B)(若按1MB=1000000B来算就是8.4GB)。随着硬盘技术的进步,硬盘容量越来越大,CHS模式无法管理超过8064 MB的硬盘,因此工程师们发明了更加简便的LBA寻址方式。在LBA地址中,地址不再表示实际硬盘的实际物理地址(柱面、磁头和扇区)。LBA编址方式将 CHS这种三维寻址方式转变为一维的线性寻址,它把硬盘所有的物理扇区的C/H/S编号通过一定的规则转变为一线性的编号,系统效率得到大大提高,避免了 烦琐的磁头/柱面/扇区的寻址方式。在访问硬盘时,由硬盘控制器再这种逻辑地址转换为实际硬盘的物理地址。

  LARGE 大硬盘模式,在硬盘的柱面超过 1024 而又不为 LBA 支持时采用。LARGE 模式采用的方法是把柱面数除以 2,把磁头数乘以 2,其结果总容量不变。

  在这三种硬盘模式中,现在 LBA 模式使用最多。

  LBA与C/H/S 之间的转换:

  设NS为每磁道扇区数,NH为磁头数,C、H、S分别表示磁盘的柱面、磁头和扇区编号,LBA表示逻辑扇区号,div为整除计算,mod为求余计算,则:

  LBA=NH×NS×C+NS×H+S-1;

  C=(LBA div NS)div NH;

  H=(LBA div NS)mod NH;

  S=(LBA mod NS)+1

  例如 LBA = 0 则 CHS = 0/0/1

  从C/H/S到LBA的计算公式:

  LBA=(C-CS)*PH*PS+(H-HS)*PS+(S-SS)

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭