当前位置:首页 > 技术学院 > 基础知识科普站
[导读]在3G中的应用在WCDMA和CDMA2000中的应用。第3 代系统被设计为一个可以提供相当高速的数据业务的系统。

在3G中的应用在CDMA" target="_blank">WCDMA和CDMA2000中的应用。第3 代系统被设计为一个可以提供相当高速的数据业务的系统。但是,它们还会像第2 代系统那样受到空中信道质量的限制。标准化组织已经认识到智能天线在改善这个矛盾方面所起的作用,并且在3G 标准中制订了相关的条款。如WCDMA 和CDMA2000 都允许在上行和下行链路为每个移动用户分配专门的导频信道,但是将要求使用智能天线系统。对于WCDMA 和CDMA2000 系统而言,智能天线虽然是推荐配置,但是当今的一些WCDMA和CDMA2000 的基站产品已经开始支持智能天线了。在TD- SCDMA系统中的应用。TDSCDMA(时分同步的码分多址) 智能天线的高效率是基于上行链路和下行链路的无线路径的对称性( 无线环境和传输条件相同) 而获得的。此外,智能天线可减少小区间干扰,也可减少小区内干扰。

智能天线的这些特性可显著提高移动通信系统的频谱效率。TD- SCDMA 系统的智能天线是由8 个天线单元的同心阵列组成的,直径为25cm。同全方向天线相比,它可获得较高的增益。其原理是使一组天线和对应的收发信机按照一定的方式排列和激励,利用波的干涉原理可以产生强方向性的辐射方向图,使用DSP( 数字信号处理器) 使主瓣自适应地指向移动台方向,就可达到提高信号的载干比,降低发射功率等目的。智能天线的上述性能允许更为密集的频率复用,使频谱效率得以显著地提高。由于每个用户在小区内的位置都是不同的。这一方面要求天线具有多向性,另一方面则要求在每一独立的方向上,系统都可以跟踪个别的用户。通过DSP 控制用户的方向测量使上述要求可以实现。每用户的跟踪通过到达角进行测量。在TD- SCDMA系统中,由于无线子帧的长度是5ms,则至少每秒可测量200 次,每用户的上下行传输发生在相同的方向,通过智能天线的方向性和跟踪性,可获得其最佳的性能。TDD(时分双工) 模式的TD- SCDMA 的进一步的优势是用户信号的发送和接收都发生在完全相同的频率上。因此在上行和下行2 个方向中的传输条件是相同的或者说是对称的,使得智能天线能将小区间干扰降至最低,从而获得最佳的系统性能。

智能天线技术对无线通信,特别是CDMA系统的性能提高和成本下降都有巨大的好处。但是,在将智能天线用于CDMA 系统时,必须考虑所带来的问题,并在标准和产品设计上解决这些问题。

全向波束和赋形波束上述智能天线的功能主要是由自适应的发射和接收波束赋形来实现的,而且接收和发射波束赋形是依据基站天线几何结构、系统的要求和所接收到的用户信号。在移动通信系统中,智能天线对每个用户的上行信号均采用赋形波束,提高系统性能是非常直接的;但在用户没有发射、仅处于接收状态下,又是在基站的覆盖区域内移动时( 空闲状态) ,基站不可能知道该用户所处的方位,只能使用全向波束进行发射( 如系统中的pilot、同步、广播、寻呼等物理信道)。一个全向覆盖的基站,其不同码道的发射波束是不同的,即基站必须能提供全向和定向的赋形波束。这样一来,对全向信道来说,将要求高得多的发射功率,这是系统设计时所必须考虑的。

智能天线的校准在使用智能天线时,必须具有对智能天线进行实时自动校准的技术。在TDD系统中使用智能天线时是根据电磁场理论中的互易原理,直接利用上行波束赋形系数来进行下行波束赋形。但对实际无线基站,每一条通路的无线收发信机不可能是完全相同的,而且,其性能将随时期、工作电平和环境条件等因素变化。如果不进行实时自动校准,则下行波束赋形将受严重影响。这样,不仅得不到智能天线的优势,甚至完全不能通信。

智能天线和其他抗干扰技术的结合目前,在智能天线算法的复杂性和实时实现的可能性之间必须进行折中。这样,实用的智能天线算法还不能解决时延超过一个码片宽度的多径干扰,也无法克服高速移动多普勒效应造成的信道恶化。在多径严重的高速移动环境下,必须将智能天线和其他抗干扰的数字信号处理技术结合使用,才可能达到最佳的效果。这些数字信号处理技术包括联合检测( joint detection) 、干扰抵消及Rake接收等。目前,智能天线和联合检测或干扰抵消的结合已有实用的算法,而和Rake 接收机的结合算法还在研究中。

设备复杂性的考虑显然,智能天线的性能将随着天线阵元数目的增加而增加。但是增加天线阵元的数量,又将增加系统的复杂性。此复杂性主要是基带数字信号处理的量将成几何级数递增。现在,CDMA系统在向宽带方向发展,码片速率已经很高,基带处理的复杂性已对微电子技术提出了越来越高的要求,这就限制了天线元的数量不可能太多。按目前的水平,天线元的数量在6~16 之间。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在这篇文章中,小编将对智能天线的相关内容和情况加以介绍以帮助大家增进对它的了解程度,和小编一起来阅读以下内容吧。

关键字: 天线 智能天线

以下内容中,小编将对智能天线的相关内容进行着重介绍和阐述,希望本文能帮您增进对智能天线的了解,和小编一起来看看吧。

关键字: 天线 智能天线

本文中,小编将对智能天线予以介绍,如果你想对它的详细情况有所认识,或者想要增进对它的了解程度,不妨请看以下内容哦。

关键字: 天线 智能天线

在这篇文章中,小编将为大家带来智能天线的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: 天线 智能天线

智能天线技术有两个主要分支。波束转换技术(Switched Beam Technology)和自适应空间数字处理技术(adaptive spatial digital processing technology),或简称...

关键字: 智能天线 波束转换 自适应

智能天线又称自适应天线阵列、可变天线阵列、多天线。智能天线指的是带有可以判定信号的空间信息(比如传播方向)和跟踪、定位信号源的智能算法,并且可以根据此信息,进行空域滤波的天线阵列。智能天线是一种安装在基站现场的双向天线,...

关键字: 智能天线 传播方向 可编程电子相位

智能天线又称自适应天线阵列、可变天线阵列、多天线。智能天线指的是带有可以判定信号的空间信息(比如传播方向)和跟踪、定位信号源的智能算法,并且可以根据此信息,进行空域滤波的天线阵列。

关键字: 智能天线 智能算法 信号源

WCDMA主要起源于欧洲和日本的早期第三代无线研究活动,GSM的巨大成功对第三代系统在欧洲的标准化产生重大影响。

关键字: WCDMA UMTS OFDM

WCDMA产业化的关键技术包括射频和基带处理技术,具体包括射频、中频数字化处理,RAKE接收机、信道编解码、功率控制等关键技术和多用户检测、智能天线等增强技术。射频和中频射频部分是传统的模拟结构,实现射频和中频信号转换。

关键字: WCDMA 射频 中频

移动通信市场和WCDMA首先,全球移动通信发展的速度非常迅速,1999年已经超过4亿用户,其中一半以上是GSM用户,其他主要是PDC和IS-95的用户。

关键字: WCDMA 移动通信 PDC
关闭