当前位置:首页 > 技术学院 > 基础知识科普站
[导读]计算机操作系统诞生初期,其体系结构就属于简单体系结构,由于当时各式各样影响因素的作用,如硬件性能、平台、软件水平等方面的限制,使得当时的计算机操作系统结构呈现出一种混乱且结构模糊的状态,其操作系统的用户应用程序和其内核程序鱼龙混杂,甚至其运行的地址和空间都是一致的。这种操作系统实际上就是一系列过程和项目的简单组合,使用的模块方法也相对较为粗糙,因此导致其结构宏观上非常模糊。

计算机操作系统诞生初期,其体系结构就属于简单体系结构,由于当时各式各样影响因素的作用,如硬件性能、平台、软件水平等方面的限制,使得当时的计算机操作系统结构呈现出一种混乱且结构模糊的状态,其操作系统的用户应用程序和其内核程序鱼龙混杂,甚至其运行的地址和空间都是一致的。这种操作系统实际上就是一系列过程和项目的简单组合,使用的模块方法也相对较为粗糙,因此导致其结构宏观上非常模糊。

计算机的体系结构

随着科学技术的不断发展和进步,硬件及其平台的水平和性能得到了很大程度的提高,其数量和种类也与日俱增,操作系统的复杂性也逐渐加深,其具备的功能以及性能越来越多,在此背景下,单体内核结构的操作系统诞生并得到了应用,例如UNIX操作系统、windows NT/XP等。一般情况下,单体内核结构的操作系统主要具备以下几种功能,分别是文件及内存管理、设备驱动、CPU调度以及网络协议处理等。由于内核的复杂性不断加深,相关的开发设计人员为了实现对其良好的控制,逐渐开始使用了一些较为成熟的模块化方法,并根据其不同的功能将其进行结构化,进而将其划分为诸多的模块,例如文件及内存管理模块、驱动模块、CPU调度模块及网络协议处理等。这些模块所使用的地址和空间与内核使用的完全一致,其以函数调用的方式构建了用于通讯的结构来实现各个模块之间的通讯。在使用模块化的方法以后,只要其通讯接口没有发生明显的变化,即使整个结构中的任何一个模块发生变化也不会对结构中的其他模块造成任何的影响,为其系统的维护和改良扩充提供了便利。虽然单体内核结构的计算机操作系统经过了模块化的处理,但是其中的全部模块仍然是在硬件之上、应用软件之下的操作系统核心中运转和工作。模块与模块之间活动的层次没有任何的差别。

层次式结构的计算机操作系统是为了减少以往操作系统中各个模块之间由于联系紧密而带来的各种问题而诞生的,其可以做大程度的减少甚至是避免循环调用现象的发生,确保调用有序,为操作系统设计目标的实现奠定了坚实的基础。在层次式结构的计算机操作系统之中,其是由诸多系统分为若干个层次的,其最底层是硬件技术,其他每一个层级均是建立在其下一层级之上的。在设计其计算机操作系统内核时,主要采用与抽象数据类型十分类似的设计方法进行的,在系统中的每一个层级均包含着多种数据和操作,且每一个的数据和操作是其他层不可见的,在每一层当中都配备了用于其他层使用的一操作接口,同时每一层发生的访问行为只能针对其下层进行,不能访问其上层的数据和服务,严格遵守了调用规则,在很大程度上避免了其他层次对某一层次的干扰和破坏。对于理想的层次式计算机系统体系结构来说,其之间的联系不仅仅是单向依赖性的,同时各个层级之间也要具备相互的独立性,且只能对低层次的模块和功能进行调用,例如THE系统。但是这种理想的全序层次式计算机操作系统在现实中建成是较为困难的,其无法完全避免模块之间循环调用现象的出现,某个层级之间仍旧存在某种循环关系,这种层次式结构又被叫作半序层次式计算机操作系统,例如SUE操作系统。

微内核计算机操作系统体系结构又可以被叫作客户机结构或者服务器结构,其实际上就是一种将系统中的代码转移到更高层次当中,尽可能地减少操作系统中的东西,仅仅保留一个小体积的内核,一般情况下其使用的主要方法就是通过用户进程来实现操作系统所具备的各项功能,具体来说就是用户进程可以将相关的请求和要求发送到服务器当中,然后由服务器完成相关的操作以后在通过某种渠道反馈到用户进程当中。在微内核结构中,操作系统的内核主要工作就是对客户端和服务器之间的通信进行处理,在系统中包括许多部分,每一个部分均具备某一方面的功能,例如文件服务、进程服务、终端服务等,这样的部分相对较小,相关的管理工作也较为便利。这种机构的服务的运行都是以用户进程的形式呈现的,既不在核心中运行,也不直接地对硬件进行访问,这样一来即使服务器发生错误或受到破坏也不会对系统造成影响,仅仅只是会造成相对应服务器的崩溃。

外核结构的计算机操作系统本质上就是为了获得更高的性能和灵活性而设计出来的,在系统中,操作系统接口处于硬件层,在内核中提出全部由以往操作系统带来的抽象,并将重点和关键放在了更多硬件资源的复用方面。在操作系统的外核结构中,内核负责的主要工作仅仅为简单的申请操作以及释放和复用硬件资源,其由以往操作系统提供的抽象全部在用户空间当中运行。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭