当前位置:首页 > 技术学院 > 基础知识科普站
[导读]驱动程序本质上是软件代码,主要作用是计算机系统与硬件设备之间完成数据传送的功能,只有借助驱动程序,两者才能通信并完成特定的功能。

驱动程序本质上是软件代码,主要作用是计算机系统与硬件设备之间完成数据传送的功能,只有借助驱动程序,两者才能通信并完成特定的功能。如果一个硬件设备没有驱动程序,只有操作系统是不能发挥特有功能的,也就是说驱动程序是介于操作系统与硬件之间的媒介,实现双向的传达,即将硬件设备本身具有的功能传达给操作系统,同时也将操作系统的标准指令传达给硬件设备,从而实现两者的无缝连接 [2] 。随着电子技术的飞速发展,电脑硬件的性能越来越强大。驱动程序是直接工作在各种硬件设备上的软件,其“驱动”这个名称也十分形象的指明了它的功能。正是通过驱动程序,各种硬件设备才能正常运行,达到既定的工作效果。硬件如果缺少了驱动程序的“驱动”,那么本来性能非常强大的硬件就无法根据软件发出的指令进行工作,硬件就是空有一身本领都无从发挥,毫无用武之地。这时候,电脑就正如古人所说的“万事俱备,只欠东风”,这“东风”的角色就落在了驱动程序身上。如此看来,驱动程序在电脑使用上还真起着举足轻重的作用。

驱动程序的开发及作用

从理论上讲,所有的硬件设备都需要安装相应的驱动程序才能正常工作。但像CPU、内存、主板、软驱、键盘、显示器等设备却并不需要安装驱动程序也可以正常工作,而显卡、声卡、网卡等却一定要安装驱动程序,否则便无法正常工作。这是为什么呢?这主要是由于这些硬件对于一台个人电脑来说是必需的,所以早期的设计人员将这些硬件列为BIOS能直接支持的硬件。换句话说,上述硬件安装后就可以被BIOS和操作系统直接支持,不再需要安装驱动程序。从这个角度来说,BIOS也是一种驱动程序。但是对于其他的硬件,例如:网卡,声卡,显卡等等 却必须要安装驱动程序,不然这些硬件就无法正常工作。当然,也并非所有驱动程序都是对实际的硬件进行操作的,有的驱动程序只是辅助系统的运行,如android中的有些驱动程序提供辅助操作系统的功能,这些驱动不是linux系统的标准驱动,如ashmen,binder等。

驱动程序的开发工作是很具挑战性的,因为必须配合着硬件与软件上相当明确与高级的平台技术。由于大多数的驱动程序(device drivers)运行在内核模式(kernel mode),软件的错误经常造成系统严重的不稳定,例如蓝屏(blue screen),这跟过去的用户模式(user mode)下的程序设计(例如Delphi、VB、Java)有明显的差异性。驱动开发的原理与步骤:1,明白你手头的硬件工作原理,包括处理器架构的知识,还有外设控制器的 datasheet 为必读之物;2,假如你们要开发的整个系统是裸机程序,那你要开发的驱动程序就是一套和硬件打交道的函数库;但是假如你们计划在产品中使用一个操作系统,那开发驱动之前就需要熟悉这个操作系统的相关内部操作原理,因为你写的是驱动程序需要很好的“镶嵌”到这个操作系统的环境中去。

微软平台为了大量减轻驱动程序开发人员的负担,微软不断的改进驱动程序的开发软件与架构,从早期复杂深晦的VxD,到Windows XP上的Windows Driver Model(以下简称WDM)开发架构,如今Windows Driver Foundation(以下简称WDF)已成为新一代的Windows平台驱动程序发展架构,这个架构大量简化了驱动程序的开发流程,更符合面向对象的精神,此架构包含了UserMode Driver Framework 与Kernel Mode DriverFramework两种开发模式。在开发Windows平台上的驱动程序之前,必须先安装DDK包,支持WDM与WDF两种架构。

Unix平台Linux作为UNIX的一个变种,继承了UNIX的设备管理方法,将所有的设备是具体的文件,通过文件系统层对设备进行访问。这种设备管理方法可以很好地做到“设备无关性”,可以根据硬件外设的更新进行方便的扩展。Linux中的设备大致可以分为三类:字符设备,块设备,网络设备。字符设备没有缓冲区,以字节为单位顺序处理数据,不支持随机读写。常见的字符设备如普通打印机、系统的串口、终端显示器、嵌入式设备中的简单按键、手写板等。块设备是指在输入输出时数据处理以块为单位的设备,一般都采用缓冲技术,支持数据的随机读写。典型的块设备有硬盘、光驱等。字符设备和块设备面向的上一层是文件系统层。对用户来说,块设备和字符设备的访问接口都是一组基于文件的系统调用,如read, write等。网络设备与块设备和字符设备不同,网络设备面向的上一层是网络协议层。设备文件是一个唯一的名字(如eth0),在文件系统中不存在对应的节点项。内核和网络驱动程序之间的通信使用的是一套和数据包传输相关的函数,而不是简单的读写操作。每一个设备都有一对主设备号、次设备号的参数作为唯一的标识。主设备号标识设备对应的驱动程序;次设备号用来区分具体驱动程序的实例。主设备号的获取可以通过动态分配或指定的方式。在嵌入式系统中外设较少,一般采用指定的方式

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭