当前位置:首页 > > AI科技大本营
[导读]作者|俊欣来源|关于数据分析与可视化今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如提高预测的精准度降低过拟合的风险加快模型的训练速度增加模型...


作者 | 俊欣来源 | 关于数据分析与可视化今天小编来说说如何通过pandas以及sklearn这两个模块来对数据集进行特征筛选,毕竟有时候我们拿到手的数据集是非常庞大的,有着非常多的特征,减少这些特征的数量会带来许多的好处,例如

  • 提高预测的精准度
  • 降低过拟合的风险
  • 加快模型的训练速度
  • 增加模型的可解释性
事实上,很多时候也并非是特征数量越多训练出来的模型越好,当添加的特征多到一定程度的时候,模型的性能就会下降,从下图中我们可以看出,

因此我们需要找到哪些特征是最佳的使用特征,当然我们这里分连续型的变量以及离散型的变量来讨论,毕竟不同数据类型的变量处理的方式不同,我们先来看一下对于连续型的变量而言,特征选择到底是怎么来进行的。

计算一下各个变量之间的相关性

我们先导入所需要用到的模块以及导入数据集,并且用pandas模块来读取from sklearn.datasets import load_boston
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
这次用到的数据集是机器学习中尤其是初学者经常碰到的,波士顿房价的数据集,其中我们要预测的这个对象是MEDV这一列x = load_boston()
df = pd.DataFrame(x.data, columns = x.feature_names)
df["MEDV"] = x.target
X = df.drop("MEDV",1)   #将模型当中要用到的特征变量保留下来
y = df["MEDV"]          #最后要预测的对象
df.head()
output      CRIM    ZN  INDUS  CHAS    NOX  ...    TAX  PTRATIO       B  LSTAT  MEDV
0  0.00632  18.0   2.31   0.0  0.538  ...  296.0     15.3  396.90   4.98  24.0
1  0.02731   0.0   7.07   0.0  0.469  ...  242.0     17.8  396.90   9.14  21.6
2  0.02729   0.0   7.07   0.0  0.469  ...  242.0     17.8  392.83   4.03  34.7
3  0.03237   0.0   2.18   0.0  0.458  ...  222.0     18.7  394.63   2.94  33.4
4  0.06905   0.0   2.18   0.0  0.458  ...  222.0     18.7  396.90   5.33  36.2
我们可以来看一下特征变量的数据类型df.dtypes
outputCRIM       float64
ZN         float64
INDUS      float64
CHAS       float64
NOX        float64
RM         float64
AGE        float64
DIS        float64
RAD        float64
TAX        float64
PTRATIO    float64
B          float64
LSTAT      float64
MEDV       float64
dtype: object
我们看到都是清一色的连续型的变量,我们来计算一下自变量和因变量之间的相关性,通过seaborn模块当中的热力图来展示,代码如下plt.figure(figsize=(10,8))
cor = df.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.Reds)
plt.show()

相关系数的值一般是在-1到1这个区间内波动的
  • 相关系数要是接近于0意味着变量之间的相关性并不强
  • 接近于-1意味着变量之间呈负相关的关系
  • 接近于1意味着变量之间呈正相关的关系
我们来看一下对于因变量而言,相关性比较高的自变量有哪些# 筛选出于因变量之间的相关性
cor_target = abs(cor["MEDV"])
# 挑选于大于0.5的相关性系数
relevant_features = cor_target[cor_target>0.5]
relevant_features
outputRM         0.695360
PTRATIO    0.507787
LSTAT      0.737663
MEDV       1.000000
Name: MEDV, dtype: float64
筛选出3个相关性比较大的自变量来,然后我们来看一下自变量之间的相关性如何,要是自变量之间的相关性非常强的话,我们也只需要保留其中的一个就行,print(df[["LSTAT","PTRATIO"]].corr())
print("=" * 50)
print(df[["RM","LSTAT"]].corr())
print("=" * 50)
print(df[["PTRATIO","RM"]].corr())
output            LSTAT   PTRATIO
LSTAT    1.000000  0.374044
PTRATIO  0.374044  1.000000
==================================================
             RM     LSTAT
RM     1.000000 -0.613808
LSTAT -0.613808  1.000000
==================================================
          PTRATIO        RM
PTRATIO  1.000000 -0.355501
RM      -0.355501  1.000000
从上面的结果中我们可以看到,RM变量和LSTAT这个变量是相关性是比较高的,我们只需要保留其中一个就可以了,我们选择保留LSTAT这个变量,因为它与因变量之间的相关性更加高一些

递归消除法

我们可以尝试这么一种策略,我们选择一个基准模型,起初将所有的特征变量传进去,我们再确认模型性能的同时通过对特征变量的重要性进行排序,去掉不重要的特征变量,然后不断地重复上面的过程直到达到所需数量的要选择的特征变量。LR= LinearRegression()
# 挑选出7个相关的变量
rfe_model = RFE(model, 7)
# 交给模型去进行拟合
X_rfe = rfe_model.fit_transform(X,y)  
LR.fit(X_rfe,y)
# 输出各个变量是否是相关的,并且对其进行排序
print(rfe_model.support_)
print(rfe_model.ranking_)
output[False False False  True  True  True False  True  True False  True False
  True]
[2 4 3 1 1 1 7 1 1 5 1 6 1]
第一行的输出包含TrueFalse,其中True代表的是相关的变量对应下一行的输出中的1,而False包含的是不相关的变量,然后我们需要所需要多少个特征变量,才能够使得模型的性能达到最优#将13个特征变量都依次遍历一遍
feature_num_list=np.arange(1,13)
# 定义一个准确率
high_score=0
# 最优需要多少个特征变量
num_of_features=0           
score_list =[]
for n in range(len(feature_num_list)):
    X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 0)
    model = LinearRegression()
    rfe_model = RFE(model,feature_num_list[n])
    X_train_rfe_model = rfe_model.fit_transform(X_train,y_train)
    X_test_rfe_model = rfe_model.transform(X_test)
    model.fit(X_train_rfe_model,y_train)
    score = model.score(X_test_rfe_model,y_test)
    score_list.append(score)
    if(score>high_score):
        high_score = score
        num_of_features = feature_num_list[n]
print("最优的变量是: %d个" %num_of_features)
print("%d个变量的准确率为: %f" % (num_of_features, high_score))
output最优的变量是: 10个
10个变量的准确率为: 0.663581
从上面的结果可以看出10个变量对于整个模型来说是最优的,然后我们来看一下到底是哪10个特征变量cols = list(X.columns)
model = LinearRegression()
# 初始化RFE模型,筛选出10个变量
rfe_model = RFE(model, 10)             
X_rfe = rfe.fit_transform(X,y)  
# 拟合训练模型
model.fit(X_rfe,y)              
df = pd.Series(rfe.support_,index = cols)
selected_features = df[df==True].index
print(selected_features)
outputIndex(['CRIM''ZN''INDUS''CHAS''NOX''RM''DIS''RAD''PTRATIO',
       'LSTAT'],
      dtype='object')

正则化

例如对于Lasso的正则化而言,对于不相关的特征而言,该算法会让其相关系数变为0,因此不相关的特征变量很快就会被排除掉了,只剩下相关的特征变量lasso = LassoCV()
lasso.fit(X, y)
coef = pd.Series(lasso.coef_, index = X.columns)
然后我们看一下哪些变量的相关系数是0print("Lasso算法挑选了 "   str(sum(coef != 0))   " 个变量,然后去除掉了"    str(sum(coef == 0))   "个变量")
outputLasso算法挑选了10个变量,然后去除掉了3个变量
我们来对计算出来的相关性系数排个序并且做一个可视化imp_coef = coef.sort_values()
matplotlib.rcParams['figure.figsize'] = (8, 6)
imp_coef.plot(kind = "barh")
plt.title("Lasso Model Feature Importance")
output可以看到当中有3个特征,‘NOX’、'CHAS'、'INDUS'的相关性为0

根据缺失值来进行判断

下面我们来看一下如何针对离散型的特征变量来做处理,首先我们可以根据缺失值的比重来进行判断,要是对于一个离散型的特征变量而言,绝大部分的值都是缺失的,那这个特征变量也就没有存在的必要了,我们可以针对这个思路在进行判断。首先导入所需要用到的数据集train = pd.read_csv("credit_example.csv")
train_labels = train['TARGET']
train = train.drop(columns = ['TARGET'])
我们可以先来计算一下数据集当中每个特征变量缺失值的比重missing_series = train.isnull().sum() / train.shape[0]
df = pd.DataFrame(missing_series).rename(columns = {'index''特征变量', 0: '缺失值比重'})
df.sort_values("缺失值比重", ascending = False).head()
output                           缺失值比重
COMMONAREA_AVG            0.6953
COMMONAREA_MODE           0.6953
COMMONAREA_MEDI           0.6953
NONLIVINGAPARTMENTS_AVG   0.6945
NONLIVINGAPARTMENTS_MODE  0.6945
我们可以看到缺失值最高的比重将近有70%,我们也可以用可视化的根据来绘制一下缺失值比重的分布图plt.rcParams['font.sans-serif']=['SimHei'#用来正常显示中文标签
plt.figure(figsize = (7, 5))
plt.hist(df['缺失值比重'], bins = np.linspace(0, 1, 11), edgecolor = 'k', color = 'blue', linewidth = 2)
plt.xticks(np.linspace(0, 1, 11));
plt.xlabel('缺失值的比重', size = 14); 
plt.ylabel('特征变量的数量', size = 14); 
plt.title("缺失值分布图", size = 14);
output我们可以看到有一部分特征变量,它们缺失值的比重在50%以上,有一些还在60%以上,我们可以去除掉当中的部分特征变量

计算特征的重要性

在基于树的众多模型当中,会去计算每个特征变量的重要性,也就是feature_importances_属性,得出各个特征变量的重要性程度之后再进行特征的筛选from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
# 模型拟合数据
clf.fit(X,Y)
feat_importances = pd.Series(clf.feature_importances_, index=X.columns)
# 筛选出特征的重要性程度最大的10个特征
feat_importances.nlargest(10)
我们同时也可以对特征的重要性程度进行可视化,feat_importances.nlargest(10).plot(kind='barh', figsize = (8, 6))
output除了随机森林之外,基于树的算法模型还有很多,如LightGBMXGBoost等等,大家也都可以通过对特征重要性的计算来进行特征的筛选

Select_K_Best算法

Sklearn模块当中还提供了SelectKBest的API,针对回归问题或者是分类问题,我们挑选合适的模型评估指标,然后设定K值也就是既定的特征变量的数量,进行特征的筛选。假定我们要处理的是分类问题的特征筛选,我们用到的是iris数据集iris_data = load_iris()
x = iris_data.data
y = iris_data.target
 
print("数据集的行与列的数量: ", x.shape) 
output数据集的行与列的数量:  (150, 4)
对于分类问题,我们采用的评估指标是卡方,假设我们要挑选出3个对于模型最佳性能而言的特征变量,因此我们将K设置成3select = SelectKBest(score_func=chi2, k=3)
# 拟合数据
z = select.fit_transform(x,y)
filter_1 = select.get_support()
features = array(iris.feature_names)
print("所有的特征: ", features)
print("筛选出来最优的特征是: ", features[filter_1])
output所有的特征:  ['sepal length (cm)' 'sepal width (cm)' 'petal length (cm)'
 'petal width (cm)']
筛选出来最优的特征是:  ['sepal length (cm)' 'petal length (cm)' 'petal width (cm)']
那么对于回归的问题而言,我们可以选择上面波士顿房价的例子,同理我们想要筛选出对于模型最佳的性能而言的7个特征变量,同时对于回归问题的评估指标用的是f_regressionboston_data = load_boston()
x = boston_data.data
y = boston_data.target
然后我们将拟合数据,并且进行特征变量的筛选select_regression = SelectKBest(score_func=f_regression, k=7)
z = select_regression.fit_transform(x, y)

filter_2 = select_regression.get_support()
features_regression = array(boston_data.feature_names)
 
print("所有的特征变量有:")
print(features_regression)
 
print("筛选出来的7个特征变量则是:")
print(features_regression[filter_2])
output
所有的特征变量有:['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO' 'B' 'LSTAT']筛选出来的7个特征变量则是:['CRIM' 'INDUS' 'NOX' 'RM' 'TAX' 'PTRATIO' 'LSTAT']

直播TeaTalk 线上直播倒计时

资讯
人工智能监考VS传统方式监考

资讯
Meta研发触觉手套助力元宇宙

资讯自动驾驶图书馆,热爱阅读的er


分享

点收藏

点点赞

点在看

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭