当前位置:首页 > 厂商动态 > 德州仪器
[导读]点击上方蓝字关注我们!静态电流通常定义为集成电路(IC)在空载和非开关但启用状态下消耗的电流。广义上,静态电流是IC在任何超低功耗状态下消耗的输入电流,这一定义更有助于我们理解静态电流的内涵。对于电池供电的应用来说,这种输入电流由电池提供,因而决定了电池工作多长时间后需要再次充电...


静态电流通常定义为集成电路 (IC) 在空载和非开关但启用状态下消耗的电流。广义上,静态电流是 IC 在任何超低功耗状态下消耗的输入电流,这一定义更有助于我们理解静态电流的内涵。



对于电池供电的应用来说,这种输入电流由电池提供,因而决定了电池工作多长时间后需要再次充电(锂离子或镍氢电池等可充电电池)或更换电池(碱性电池或锂二氧化锰等原电池)。对于长时间处于待机或休眠模式的电池供电应用,其电池运行时间可能因静态电流的影响产生数年之差。例如,使用 60nA 的 TPS62840 等超低静态电流升压转换器为常开型应用(如图 1 中的智能电表)供电,其电池运行时间可达 10 年。


图 1:智能电表



静态电流也会影响我们日常设备中的电池的运行时间。比如,您在买到智能手表之后,会在使用之前先充一小时电。又或者,您总是随身携带家中的实体钥匙,以防智能锁(如图 2 所示)的电池电量耗尽。以上两种场景也与静态电流脱不开干系。


图 2:智能锁应用



本文将介绍直流/直流转换器数据表中与静态电流相关的三种常见规格——关断电流、非开关静态电流和开关静态电流,并对这些规格如何影响系统功耗进行说明。


关断电流


关断电流是在 IC 关闭或禁用时进行测量的。因此,您可能会认为非开关静态电流应该一直为零。事实上,部分 IC 在该状态下会出现泄漏电流,而其他 IC 实际上具有内部电路,即便在 IC 禁用的情况下,内部电路也会消耗少量电流以维持内务处理功能。



以摆放在商店货架上的消费类电子产品为例,您的智能手表之所以在购买之后无法立即工作,与其 IC 的关断电流规格有关,如图 3 所示。当终端产品在商店货架上摆放或在仓库中长时间存放时(温度可能会升高,导致电池电量更快耗尽),其中的器件(例如大部分直流/直流转换器)是处于关断状态的。因此,尽管直流/直流转换器处于禁用状态,电池仍在缓慢放电。


图 3:BQ21061 处于运输节电模式时的电池放电电流



部分 IC 具有多种关断状态,比如 TI 的 BQ25120 电池充电器的 2nA 运输模式,或者 TPS61094 升压转换器的 4nA 旁路模式。在这些高级关断状态下,为了仅消耗极少量的静态电流,通常会启用非常有限的器件功能。与静态电流为 700nA 的 BQ25120 高阻抗(关断)模式和静态电流为 200nA 的 TPS61094 关断模式相比,运输节电模式和旁路模式可将电池运行时间分别延长 350 倍和 50 倍。


非开关静态电流


非开关静态电流是 IC 已启用、处于开关脉冲之间且没有负载时的电流。这一参数可通过量产自动化测试设备轻松测得,因此可从大部分开关直流/直流转换器的数据表中找到。



虽然可以根据非开关静态电流对不同的 IC 进行同类比较,但这种方式无法对电池运行时间进行最准确的估算,原因有二:非开关静态电流不同于消耗的电池电流,而且许多 IC 同时通过输入电压和输出电压消耗静态电流。但是,既然输出电压及其静态电流从根本上来自输入端的电池,因而需要采取额外转换或测量,以获取输入电源的等效静态电流——不可将两个静态电流值简单相加来得出消耗的电池总电流。例如,TPS61099 升压转换器可从输入电压消耗 400nA 静态电流,并从输出电压消耗 600nA 静态电流,但其空载输入电流消耗约为 1.3µA 而非 1µA。


开关静态电流


开关静态电流有许多不同的名称:工作静态电流、待机电流、休眠模式电流、空载输入电流、低压降线性稳压器 (LDO) 的接地电流等。它是 IC 处于工作状态且不提供任何负载电流时实际测得的输入电流。由于开关静态电流是在实际情况下而非量产线上所测得,因此 IC 偶尔会进行切换以减少损耗并对输出端的泄漏进行补充。



该参数是对空载状态下所消耗电池电流的最准确估算,可在许多数据表中找到,例如 TPS62840 的开关静态电流为 60nA,如图 4 所示。


图 4:60nA 静态电流直流/直流转换器



对于大部分时间都保持超低功耗状态的应用来说,使用低静态电流直流/直流转换器对于实现应用所需的电池运行时间至关重要。例如,智能锁在大部分时间内处于超低功耗状态,等待手机发送开锁码。如果开关静态电流过高,则大部分的电池电量都将消耗在等待中,而不是用于开关锁。



欢迎参与 TI 知乎讨论,


如何看待 TI 电源管理产品在低静态功耗领域的技术新突破?


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭