当前位置:首页 > > 全栈芯片工程师
[导读]上一篇《EDA云实证Vol.1:从30天到17小时,如何让HSPICE仿真效率提升42倍?》里,我们帮一家DesignHouse提高了使用HSPICE进行芯片设计仿真的效率。而设计好的集成电路图案需要通过光刻机转印到晶圆上才能完成制造,这就是芯片制造中最重要的一个步骤——光刻。在...

上一篇《EDA云实证Vol.1:从30天到17小时,如何让HSPICE仿真效率提升42倍?》里,我们帮一家Design House提高了使用HSPICE进行芯片设计仿真的效率。


而设计好的集成电路图案需要通过光刻机转印到晶圆上才能完成制造,这就是芯片制造中最重要的一个步骤——光刻

在先进工艺特别是 FinFET 工艺中,计算光刻已经成为光刻工艺研发的核心。


光学邻近效应校正(Optical Proximity Correction,OPC属于计算光刻技术的一种,主要是利用软件和高性能计算,来模拟仿真光刻过程中的光学和化学过程,通过仿真建立精确的计算模型,然后调整图形的边沿不断仿真迭代,直到逼近理想的图形,最终加速工艺研发周期的目标。

这一过程对计算资源的需求随着模型的精确度呈指数级别增长。

举个例子,一款7nm芯片需要高达100层的光罩,每层光罩数据都需要使用EDA工具进行OPC的过程。整个过程对硬件算力要求很高,EDA工具需要运行在几千核的服务器CPU上,动辄就是几十万核时。

 

我们通过今天的实证验证了如何在不同场景下,大幅帮用户缩短OPC运行时间,同时确保云端和本地计算结果的完全一致性和计算性能的稳定性。

这次实证涉及的场景很细致,既有License服务器的配置地点,又有不同调度器,还一一对云上计算结果和本地做了数据对比,使用的计算资源数量跨度也很大,从80-5000核不等,非常细致,极具参考性。





实证背景信息





A社是一家大型IC设计公司,随着近年业务规模不断扩大,OPC相关计算需求增大。但A社本地机房空间不足,原先传统托管IDC模式也难以满足弹性需求,导致大量任务出现排队,无法及时输出成果,拖慢了整个IC研发进程。公司希望在本地建设和IDC托管之外,寻求具备弹性的大规模算力来满足业务高峰期的需求,来满足业务扩展需求。


实证目标




1、OPC任务能否在云端有效运行?
2、fastone平台能否满足业务弹性资源需求,有效减少OPC运行时间?

3、License Server配置在本地和云端对计算性能/一致性/稳定性是否有影响?

4、fastone能否支持不同调度器SGE/Slurm?使用不同调度器对计算性能/一致性/稳定性是否有影响?

5、fastone平台的云端输出计算结果是否与本地完全一致?





实证参数



平台:fastone企业版产品
应用:Proteus™OPC
适用场景:在提交设计到制造之前,模拟仿真光学邻近效应校正,从理论上探索增大最小可分辨特征尺寸(Minimum Resolvable Feature size,MRF)和工艺窗口(Process Window,PW)的途径,指导工艺参数的优化。
License配置:本次实证分别验证了License Server部署在本地和云端的表现。
云端硬件配置:本次实证涉及的考察因素比较多,尤其是本地和云上进行了同步一对一对比。用户希望和本地硬件配置尽量保持一致,有更好的可比性,所以选择了跟本地接近的内存密集型实例机型。
调度器:本次实证同时采用了SGE和Slurm两种调度器。
技术架构图:两个红框表示EDA License Server分别部署在本地或云端。
应A社对于数据保密的要求,本实证所有数据均经过处理。


实证场景一


5000核大规模OPC业务上云验证

结论:1、云端调度5000核计算资源运算一组OPC任务,耗时为80核计算资源运算耗时的0.019倍,相当于从一个月缩短到13.8小时;2、公有云厂商大内存型资源数量不算多,单个区域想要一次性获取高达5000核的内存型实例很难实现。fastone平台的Auto-Scale功能可在较短时间内,根据用户需求,自动化跨区调度到大量目标类型计算资源。
实证过程:
1、云端调度80核计算资源运算一组任务,耗时为x;5、云端调度5000核计算资源运算一组任务,耗时为0.019x。

关于通过fastone平台的Auto-Scale功能基于用户时间优先策略和成本优先策略自动调度本区域及其他区域的目标类型或相似类型实例资源,这篇文章《生信云实证Vol.3:提速2920倍!用AutoDock Vina对接2800万个分子》里有详细说明。





实证场景二


License Server配置在本地VS云端
云上VS本地:计算性能/一致性/稳定性验证
结论:1、License Server部署在本地和云端对于计算结果无影响;2、云端和本地分别运行相同OPC任务:计算性能:云上计算时间均优于本地;一致性:云端和本地计算结果均完全一致;稳定性:集群运行均无中断,GUI启动均正常。实证过程:1、License Server部署在本地,云上调度80/240/480/1600/3200/5000核计算资源运行OPC任务,本地同步运行80/240/480/1600/3200/5000核相同OPC任务;2、License Server部署在云端,云上调度80/240/480/1600/3200/5000核计算资源运行OPC任务,本地同步运行80/240/480/1600/3200/5000核相同OPC任务。


实证场景三


License Server配置在本地VS云端云端扩展性验证
结论一:1、License Server配置在本地,使用云端资源运算OPC任务,性能随资源增加线性提升。注:参考值分别为:80核-1、240核-0.3333、480核-0.1667、1600核-0.05、3200核-0.025,5000核-0.016。
实证过程:将License Server部署在本地:1、云端调度80核计算资源运算Case1,耗时为x;2、云端调度240核计算资源运算Case1,耗时为0.3375x;3、云端调度480核计算资源运算Case1,耗时为0.1679x;4、云端调度1600核计算资源运算Case1,耗时为0.0518x;5、云端调度3200核计算资源运算Case1,耗时为0.0285x;6、云端调度5000核计算资源运算Case1,耗时为0.0216x;7、云端调度80核计算资源运算Case2,耗时为y;8、云端调度240核计算资源运算Case2,耗时为0.3389y;9、云端调度480核计算资源运算Case2,耗时为0.1682y;10、云端调度1600核计算资源运算Case2,耗时为0.0529y;11、云端调度3200核计算资源运算Case2,耗时为0.0300y;12、云端调度5000核计算资源运算Case2,耗时为0.0230y。
结论二:License Server配置在云端,使用云端资源运算OPC任务,性能随资源增加线性提升。注:参考值分别为:80核-1、240核-0.3333、480核-0.1667、1600核-0.05、3200核-0.025,5000核-0.016。
实证过程:将License Server部署在云端:1、云端调度80核计算资源运算Case1,耗时为x;2、云端调度240核计算资源运算Case1,耗时为0.3346x;3、云端调度480核计算资源运算Case1,耗时为0.1672x;4、云端调度1600核计算资源运算Case1,耗时为0.0515x;5、云端调度3200核计算资源运算Case1,耗时为0.0270x;6、云端调度5000核计算资源运算Case1,耗时为0.0191x;7、云端调度80核计算资源运算Case2,耗时为y;8、云端调度240核计算资源运算Case2,耗时为0.3390y;9、云端调度480核计算资源运算Case2,耗时为0.1691y;10、云端调度1600核计算资源运算Case2,耗时为0.0588y;11、云端调度3200核计算资源运算Case2,耗时为0.0329y;12、云端调度5000核计算资源运算Case2,耗时为0.0262y。


实证场景四


不同调度器验证:SGE VS Slurm
云端2000核/5000核
结论:1、分别使用SGE和Slurm调度云端2000核/5000核运行相同OPC任务,对于计算结果无影响;2、云端和本地使用不同调度器分别运行相同OPC任务:计算性能:云上计算时间均优于本地;一致性:云端和本地计算结果均完全一致稳定性:集群运行均无中断,GUI启动均正常。实证过程:1、使用SGE调度器,云上调度2000核计算资源运算一组OPC任务,本地同步运行2000核相同OPC任务;2、使用SGE调度器,云上调度5000核计算资源运算一组OPC任务,本地同步运行5000核相同OPC任务;3、使用Slurm调度器,云上调度2000核计算资源运算一组OPC任务,本地同步运行2000核相同OPC任务;4、使用Slurm调度器,云上调度5000核计算资源运算一组OPC任务,本地同步运行5000核相同OPC任务。
这篇文章《亿万打工人的梦:16万个CPU随你用》里,我们基于这四家主流调度器:LSF/SGE/Slurm/PBS以及它们的9个演化版本进行了梳理和盘点,尤其是对云的支持方面划了重点。可以了解一下。


实证小结



1、Proteus™OPC任务在云端能有效运行;2、fastone平台能够大幅度缩短OPC任务运行时间;3、License Server配置在本地和云端,对计算性能/一致性/稳定性没有影响;4、fastone平台使用不同调度器SGE/Slurm,对计算性能/一致性/稳定性没有影响;5、云端和本地运行相同OPC任务,对计算结果没有影响。

本次EDA行业Cloud HPC实证系列Vol.4就到这里了。在下一期实证中,我们将对Virtuoso使用速石平台进行验证。请保持关注哦!  END -
我们有个为应用定义的EDA云平台集成多种EDA应用,大量任务多节点并行应对短时间爆发性需求,连网即用跑任务快,原来几个月甚至几年,现在只需几小时5分钟快速上手,拖拉点选可视化界面,无需代码支持高级用户直接在云端创建集群 
扫码免费试用,送300元体验金,入股不亏~
更多电子书欢迎扫码关注小F(ID:imfastone)获取
你也许想了解具体的落地场景:这样跑COMSOL,是不是就可以发Nature了
Auto-Scale这支仙女棒如何大幅提升Virtuoso仿真效率?
1分钟告诉你用MOE模拟200000个分子要花多少钱LS-DYNA求解效率深度测评 │ 六种规模,本地VS云端5种不同硬件配置
揭秘20000个VCS任务背后的“搬桌子”系列故事155个GPU!多云场景下的Amber自由能计算怎么把需要45天的突发性Fluent仿真计算缩短到4天之内?
国内最大规模OPC上云,5000核并行,效率提升53倍
提速2920倍!用AutoDock Vina对接2800万个分子从4天到1.75小时,如何让Bladed仿真效率提升55倍?从30天到17小时,如何让HSPICE仿真效率提升42倍?
关于为应用定义的云平台这一届科研计算人赶DDL红宝书:学生篇
缺人!缺钱!赶时间!初创IC设计公司如何“绝地求生”?
速石科技获元禾璞华领投数千万美元B轮融资一次搞懂速石科技三大产品:FCC、FCC-E、FCP速石科技成三星Foundry国内首家SAFE™云合作伙伴EDA云平台49问
国内超算发展近40年,终于遇到了一个像样的对手帮助CXO解惑上云成本的迷思,看这篇就够了花费4小时5500美元,速石科技跻身全球超算TOP500

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭