当前位置:首页 > 技术学院 > 基础知识科普站
[导读]磁芯存储器是随机存取计算机存储器的主要形式,存在20年。这种存储器通常被称为核心存储器,或者非正式地称为核心存储器。核心使用微小的磁环(环),核心通过线程来写入和读取信息。 每个核心代表一点信息。 磁芯可以以两种不同的方式(顺时针或逆时针)磁化,存储在磁芯中的位为零或一,取决于磁芯的磁化方向。 布线被布置成允许单个芯被设置为1或0,并且通过向所选择的导线发送适当的电流脉冲来改变其磁化。 读取内核的过程会导致内核重置为零,从而将其擦除。 这称为破坏性读数。 在不进行读写操作时,即使关闭电源,内核也会保持最后的值。 这使它们成为非易失性的。

磁芯存储器是随机存取计算机存储器的主要形式,存在20年。这种存储器通常被称为核心存储器,或者非正式地称为核心存储器。核心使用微小的磁环(环),核心通过线程来写入和读取信息。 每个核心代表一点信息。 磁芯可以以两种不同的方式(顺时针或逆时针)磁化,存储在磁芯中的位为零或一,取决于磁芯的磁化方向。 布线被布置成允许单个芯被设置为1或0,并且通过向所选择的导线发送适当的电流脉冲来改变其磁化。 读取内核的过程会导致内核重置为零,从而将其擦除。 这称为破坏性读数。 在不进行读写操作时,即使关闭电源,内核也会保持最后的值。 这使它们成为非易失性的。

磁芯存储器概述

早期的计算机最常见的存储器是各种磁芯制成的。这种磁芯存储器已被微型集成电路块上的半导体存储器所取代。磁芯存储器是华裔王安于1948年发明的(注)。最初的磁芯存储器只有几百个字节的容量。磁芯的英文名称就是core,磁芯存储器就叫作core memory。如今,虽然磁芯存储器已经被淘汰,但一些人还是出于习惯把内存叫做core。在铁氧体磁环里穿进一根导线,导线中流过不同方向的电流时,可使磁环按两种不同方向磁化,代表“1”或“0”的信息便以磁场形式储存下来。

磁芯在导线上流过一定电流下会被磁化或者改变磁化方向,事先可以通过实验和材料的工艺控制得到这个能够让磁芯磁化的电流最小阈值。每个磁芯都有XY互相垂直的两个方向的导线穿过,另外还有一条斜穿的读出线,上面的照片中可以清楚地看到这些线,这些线组成阵列,XY分别做两个不同方向的寻址。磁芯根据磁化时电流的方向可以产生两个相反方向的磁化,这就可以作为0和1的状态来记录数据。写入的时候在需要写入的磁芯所对应的XY坐标线上各输入稍高于50%磁环磁化阈值的电流,所以这样只有XY坐标对应的那个磁芯上会同时在两条线中都有电流,叠加之后会超过阈值的电流,磁芯因而磁化或者改变磁化方向从而写入一位数据,而其他所有的磁芯内通过的电流或者是0,或者是50%磁化阈值,都达不到磁化电流不能被磁化,所以没有数据写入。读出的时候比较复杂,分别在XY送入读出电流,读出电流的大小和写入的时候一样也是略大于50%磁化阈值的电流,读出电流的方向我们是事先知道的,这样在XY寻址坐标所对应的那个磁芯里就会有超过阈值的电流,如果它的本来磁场方向和读出电流所对应的磁场方向相反的话,那么由于磁芯的磁性状态发生翻转,有巨大的磁通量变化,在斜穿的读出线上就会有大的感应电流,所以我们就知道这个磁芯存储的是和读出信号相反的数据。如果它的本来磁场方向和读出电流所对应的磁场方向一样的话,那么由于磁芯的磁性状态没有发生变化,在斜穿的读出线上就不会有感应电流,所以我们就知道这个磁芯存储的是和读出信号相同的数据。磁芯中的数据就这样被读出了,不过这还没有完,因为值得注意的是这时候在读完数据之后显然无论原来磁芯上存的是什么数据,读过之后就都被写成同样的读出数据了,也就是这个读出是破坏性的,所以必须有个办法在读出之后恢复存储的数据。所以读完之后还需要立即另外重新再写一遍原先的数据进去,恢复本来的数据,方法就是前述的写入数据的方法,用放在缓存中的磁环中原来存储的数据写回去。所以磁芯存储器的读相当麻烦,也比较慢。读出时没被选中的磁芯和写入时一样,都不会改变磁性状态而产生感应电流,所以不会被读出也不会干扰被选中的磁芯读出数据。磁芯存储器有个和一般我们的存储概念不同的地方,就是通常情况下一个存储器的写入总是比读出要慢,但是磁芯存储器恰恰相反,它是读出比写入慢,因为它的读出是破坏性的,所以读出必须包括一个写入的过程以恢复数据。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭