当前位置:首页 > 通信技术 > 通信模块
[导读]第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和速度以及更高的抗辐射能力,更适合制作高温、高频、抗辐射及大功率器件。

第三代半导体材料具有更宽的禁带宽度、更高的击穿电场、更高的热导率、更大的电子饱和速度以及更高的抗辐射能力,更适合制作高温、高频、抗辐射及大功率器件。GaN 是一种 III/V 直接带隙半导体,通常用于微波射频、电力电子和光电子三大领域。具体而言,微波射频方向包含了 5G 通信、雷达预警、卫星通讯等应用;电力电子方向包括了智能电网、高速轨道交通、新能源汽 车、消费电子等应用;光电子方向包括了 LED、激光器、光电探测器等应用。

射频:5G 基站、雷达——GaN 射频器件大有可为

自20年前出现首批商业产品以来,GaN 已成为射频功率应用中 LDMOS 和 GaAs 的重要竞争对手,其性能和可靠性不断提高且成本不断降低。第一批 GaN-on-SiC 和 GaN-on-Si 器件几乎同时出现,但 GaN-on-SiC 技术更加成熟。目前在射频 GaN 市场上占主导地位的 GaN-on-SiC 突破了 4G LTE 无线基础设施市场,并有望在5G的Sub-6GHz实施方案的 RRH(Remote Radio Head)中进行部署。

在常用半导体工艺中,CMOS 低功耗、高集成度、低成本等优势显著。SiGe 工艺兼容性优势突出,几乎能 与硅半导体超大规模集成电路行业中的所有新工艺技术兼容。GaAs 在高功率传输领域具有优异的物理性能。GaN 在高温、高频、大功率射频组件应用独具优势。基于功耗和成本等因素,消费终端产品明显更多采用CMOS 技术;CPE 采用 CMOS 和 SiGe BiCMOS;低功耗接入点则采用CMOS、SiGe BiCMOS和GaAs;而高功率基站领域则是GaAs和GaN的天下。

GaN 非常适合毫米波领域所需的高频和宽带宽,可满足性能和小尺寸要求。使用 mmWave 频段的应用将 需要高度定向的波束成形技术,这意味着射频子系统将需要大量有源元件来驱动相对紧凑的孔径。GaN 非常适合这些应用,因为小尺寸封装的强大性能是 GaN 最显著的特征之一。

在高功率放大器方面,LDMOS 技术由于其低频限制只在高射频功率方面取得了很小进展。GaAs 技术能够 在 100GHz 以上工作,但其低导热率和工作电压限制了其输出功率水平。50V GaN/SiC 技术在高频下可提供数百瓦的输出功率,并能提供雷达系统所需的坚固性和可靠性。HV GaN/SiC 能够实现更高的功率,同时可显著降低射频功率晶体管的数量、系统复杂性和总成本。

射频:射频氮化镓市场快速增长

RF GaN市场在过去几年中经历了令人瞩目的增长,并已经改变了RF功率行业。大多数Sub 6GHz 的蜂窝网络都将采用氮化镓器件,因为 LDMOS 无法承受如此之高的频率,而砷化镓对于高功率应用又非理想之选。同时,由于较高的频率会降低每个基站的覆盖范围,需要安装更多的晶体管,因此市场规模将迅速扩大。GaN器件收入目前占整个市场20%左右,到2025年预计将占到50%以上。根据Yole数据,2017年RF GaN市场规模约3.8亿美元,预计2023年达13亿美元,主要应用领域为无线基础设施、国防军工、有线电视系统等。

随着新的基于 GaN 的有源电子扫描阵列(AESA)雷达系统的实施,基于 GaN 的军用雷达预计将主导 GaN军事市场,从 2018 年的 2.7 亿美元增长至 2024 年的 9.77 亿美元,CAGR 达 23.91%,具有很大的增长潜力。GaN 无线基础设施的市场规模将从 2018 年的 3.04 亿美元增长至 2024 年的 7.52 亿美元,CAGR 达 16.3%。GaN有线宽带市场规模从 2018 年的 1,550 万美元增长至 2024 年的 6,500 万美元,CAGR 达 26.99%。GaN 射频功率市场规模从 2018 年的 200 万美元增长至 2024 年的 10,460 万美元,CAGR 达 93.38%,具有很大的成长空间。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭