当前位置:首页 > 技术学院 > 基础知识科普站
[导读]在计算机网络中,巨型帧(英语:jumbo frames),又称大型帧,是指有效负载超过IEEE 802.3标准所限制的1500字节的以太网帧。通常来说,巨型帧可以携带最多9000字节的有效负载,但也存在变化,因此需要谨慎使用该术语。许多吉比特以太网交换机和吉比特以太网网卡可以支持巨型帧。部分Fast Ethernet交换机和Fast Ethernet网卡也支持巨型帧。大多数国家级研究和教育网络(诸如Internet2、National LambdaRail、ESnet、GÉANT和AARNet)支持巨型帧,但大多数商业性互联网服务供应商则不支持。

在计算机网络中,巨型帧(英语:jumbo frames),又称大型帧,是指有效负载超过IEEE 802.3标准所限制的1500字节的以太网帧。通常来说,巨型帧可以携带最多9000字节的有效负载,但也存在变化,因此需要谨慎使用该术语。许多吉比特以太网交换机和吉比特以太网网卡可以支持巨型帧。部分Fast Ethernet交换机和Fast Ethernet网卡也支持巨型帧。大多数国家级研究和教育网络(诸如Internet2、National LambdaRail、ESnet、GÉANT和AARNet)支持巨型帧,但大多数商业性互联网服务供应商则不支持。

巨型帧概述

巨型帧是帧长大于1522字节的以太网帧。这是一种厂商标准的超长帧格式,专门为千兆以太网而设计。巨型帧的长度各厂商有所不同,从9000字节~64000字节不等。采用巨型帧能够令千兆以太网性能充分发挥,使数据传输效率提高50%~100%。在网络存储的应用环境中,巨型帧更具有非同寻常的意义。

每个接收到的以太网帧都需要网络硬件和软件处理。增加帧大小有助于用更少的努力传递更大量的数据,降低CPU使用率(主要是减少中断),以及通过减少需处理的帧来增加吞吐量和减少所发送帧的帧开销总量。巨型帧最初是由Alteon WebSystems在其ACEnic吉比特以太网适配器中推出。其他许多厂商也采纳了此大小。但是,巨型帧尚未成为官方的IEEE 802.3以太网标准的一部分。

巨型帧或9000字节有效负载帧可以减少开销和CPU使用。最近的工作也证明了,巨型帧对端到端TCP性能有着积极作用。巨型帧的存在可能对网络延迟有不利影响,尤其是在低带宽链路上。端到端连接使用的帧大小通常受到中间链路中的最小帧大小限制。802.5 Token Ring可以使用4464字节的帧MTU,FDDI可以4352字节,ATM可以9180字节,以及802.11可以传输7935字节MTU。IEEE 802.3以太网标准仅规定支持1500字节的帧MTU,总计1518字节的帧大小(1522字节及可选的IEEE 802.1QVLAN/QoS标签)。巨型帧所采用的9000字节有效负载大小来自Internet2联合工程团队与美国联邦政府网络的讨论。他们的建议已被其他所有国家研究和教育网络采纳。为满足这一强制性购买标准,制造商已将9000字节纳入常规的MTU大小,使巨型帧尺寸至少有9018/9022字节(不含或包含IEEE 802.1Q字段)。大多数以太网设备可支持高达9216字节的巨型帧。

巨型帧在使用以太网帧中简单的CRC32错误检测时,更容易遭受未检测到的错误——因为更多的数据增加了几个错误互相抵消的概率。正因如此,已经有较高网络层上的额外机制被开发以改进错误检测。IETF为巨型帧中避免数据完整性降低准备的解决方案是在SCTP传输(RFC 4960)和iSCSI(RFC 7143)中使用Castagnoli CRC polynomial。这个多项式的选择基于论文“32-Bit Cyclic Redundancy Codes for Internet Applications”中记录的成果。Castagnoli多项式0x1EDC6F41达到了汉明距离HD=6,在超过一个以太网MTU(16,360位数据字长)时,以及HD=4(114,663比特),当超过以太网MTU长度的9倍。相比以太网CRC标准的多项式,这为基于MTU大小的数据提供了额外两个比特的错误检测能力,而不牺牲在数据字长超过72kbits时的HD=4的能力。通过为UDP和TCP传输内部使用CRC校验和而非简单的累加校验和,发生在NIC内部的错误也可以被检测到。由于简单求和时这些误差往往会自我消除,TCP和UDP都已被证明在检测总线特定比特错误上是无效的。在RFC 3309中完成的对真实数据注入模拟误差并对比的测试显示,这些错误有将近2%未被检测到。采用巨型帧的主要障碍之一是,升级现有的以太网基础设施以避免降低检测错误的能力是困难的。在软件中完成的CRC计算必定会慢于TCP和UDP中那种简单的累加校验和实现。为克服这种性能损失,NIC卸载SCTP校验和计算是可能的,并且支持SSE4.2的CPU可以利用在向量数学指令集中扩展的CRC32指令。在设计处理数据块的常规目的传输中,以及在设计携带SCSI数据的TCP传输中,支持Castagnoli CRC多项式都可以带来更好的错误检测,尽管使用增加以太网MTU的巨型帧会使错误检测显著减少。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭