当前位置:首页 > 技术学院 > 基础知识科普站
[导读]全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。

全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用于郊县大区制的站型,覆盖范围大。全向天线会向四面八方发射信号,前后左右都可以接受到信号,定向天线就好像在天线后面罩一个碗状的反射面,信号只能向前面传递,射向后面的信号被反射面挡住并反射到前方,加强了前面的信号强度。下图为定向天线的信号辐射图。定向天线的主要辐射范围象个倒立的不太完整的圆锥。

单极子1.1 微带馈电的单极子。平面单极子天线 结构简单,有接近全向的辐射方向图,在通信中被广泛的应用,如下图所示的单极子天线。该天线的最大不同之处在于地面的变形,常规天线的地面经常是整个介质的尺寸,而该单极子的地面只有介质的一半还小,且一边改为椭圆形与三角形组成,椭圆形长短半轴之比为 1.8,单极子也为椭圆形,长短半轴之比为 1.2,整个天线有微带馈电,地面宽度W和馈电缝隙处的长度h是影响天线性能的主要参数。

1.2 共面波导馈电的单极子天线。其特点之一是用到共面波导馈电,共面波导与传统的微带线相比有两大优点:高频的低偏移特性和宽的阻抗带宽。另一特点在于辐射单元采用六边形贴片,与其他的长方形,正方形,三角形相比,六边形也有宽带特性的固有优点。整个天线馈电部分通过在接地共面波导上下面上开孔,使得上下两层面之间形成短路,从而阻止了寄生模式的产生,而且孔的数量也可改变天线的输入阻抗。从图中还可看到,六边形贴片下地面被移去,这样可以促使底部宽边的辐射。通过调节馈线以及馈线两侧缝隙的宽度可以达到良好的匹配,这也使得天线容易得到阻抗匹配。

偶极子单极子和偶极子虽然理论上具有全向的辐射模式,但实际上因馈线的影响,垂直面上电场下倾,使得水平方向上的辐射特性受到影响,因此很难得到的全向方向图。天线 由偶极子组成,通过合理安排偶极子辐射单元与馈线的隔离,屏蔽了馈线的影响,使水平方向上达到全向辐射,天线通过采用另一偶极子作为寄生单元,使得整个天线工作在两个频段 0.9GHZ和 2.0GHZ,且天线增益很高,两个频段分别达到 10dBi和 12dBi。整个天线结构为:中间为一金属管,围绕金属管有四片介质,每一介质上有两个带有寄生单元的偶极子,偶极子长度为137mm,工作频率为0.9GHZ,寄生单元长度为47mm,工作频率为2.0GHZ,同一基片上两个偶极子的中心距离为 150mm,整个天线用一直径为 110mm的柱形天线罩包起。天线的馈电部分用到四路工分器和巴仑。

阵列全向天线一般的单元天线很难形成全向辐射,我们可以考虑将其组成阵列,从而可以使阵列天线形成全向方向图。而且单个天线的增益一般有限,通过组成阵列,可以提高增益,从而满足我们所想要设计的全向高增益的要求。

微带全向天线微带天线因其结构简单,加工成本低,重量轻等诸多优点,成为天线领域的一项关键技术,因此,各种性能的微带天线都在被研究,全向性也成为微带天线发展的一个趋势,比如利用微带传输线进行交叉馈电可以实现微带天线的全向辐射性能。一个多点激励的直线阵列天线 ,该天线由多个λ /2的微带段级连而成,微带线段的地板和导带在介质基片的两面交替放置,并且微带的地板宽度是变化的,利用交叉连接来达到倒相的目的。该结构中除了传输模,还存在交叉连接点的不连续性形成的辐射模,波沿导带和地板的内表面传输,辐射的大小由地板宽度来控制,为得到良好的全向性能,宽度限制在大约λ /4范围内。欲使该天线达到良好的辐射效率,还可以对其进行阻抗匹配,在每段导带上添加矩形帖片,通过增加电抗分量来改善匹配。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭