当前位置:首页 > 模拟 > 模拟
[导读]近年来,摩尔定律走向物理极限的论调甚嚣尘上,但比利时微电子研究中心 (IMEC) 近日表示,1nm制程2027年就可实用化,更进一步的0.7nm则预计将在2029年后量产。

近年来,摩尔定律走向物理极限的论调甚嚣尘上,但比利时微电子研究中心 (IMEC) 近日表示,1nm制程2027年就可实用化,更进一步的0.7nm则预计将在2029年后量产。据日媒报道,IMEC素有“全球半导体产业背后头脑”之称,公司CEO Luc Van den hove博士在接受采访时强调,搭配全新技术,“摩尔定律要前进多少个世代都不是问题。”2nm及以下制程开发进度方面,台积电和三星电子都计划在2025年投入2nm制程量产。

英特尔同样正急起直追,IBM则已于5月宣布,在2nm制程的测试生产取得成果。另据Van den hove称,IMEC和ASML合作的EUV机台研发工作正在进行,日本的TEL也参与其中,预计测试机台可在2023年初完成,也有企业打算在2026年投入量产。Van den hove认为,随着半导体性能大幅提升,将使得家电、机器人这类“边缘设备”有效应用AI科技,未来AI技术将在云端计算和边缘设备之间取得平衡,而计算的分散也有望降低数据在送往数据中心过程中产生的电能消耗。

半导体制程已经进展到了3nm,今年开始试产,明年就将实现量产,之后就将向2nm和1nm进发。相对于2nm,目前的1nm工艺技术完全处于研发探索阶段,还没有落地的技术和产能规划,也正是因为如此,使得1nm技术具有更多的想象和拓展空间,全球的产学研各界都在进行着相关工艺和材料的研究。

上周,IBM和三星公布了一种在芯片上垂直堆叠晶体管的新设计,被称为垂直传输场效应晶体管 (Vertical Transport Field Effect Transistors,VTFET)。当前的处理器和SoC,晶体管平放在硅表面上,然后电流从一侧流向另一侧。相比之下,VTFET彼此垂直,电流垂直流动。该技术有望突破1nm制程工艺瓶颈。

IBM和三星表示,这种设计有两个优点。首先,它可以绕过许多性能限制,将摩尔定律扩展到IBM当前的纳米片技术之外,更重要的是,由于电流更大,该设计减少了能源浪费,他们估计VTFET将使处理器的速度比采用 FinFET 晶体管设计的芯片快两倍或功耗降低 85%。IBM和三星声称,这一工艺技术有望允许手机一次充电使用整整一周。他们表示,它还可以使某些能源密集型任务(包括加密采矿)更加节能,因此对环境的影响较小。IBM 和三星尚未透露他们计划何时将该工艺技术商业化。他们并不是唯一一家试图突破 1 nm瓶颈的公司。今年5月,台积电与合作伙伴发布了1nm工艺技术路径;7 月,英特尔表示,其目标是在 2024 年之前完成埃级芯片的设计。该公司计划使用其新的“英特尔 20A”制程节点和 RibbonFET 晶体管来实现这一目标。

就逻辑元件而言,随着微缩化发展,其晶体管的结构从长年以来的平板型(Planner)结构到FinFET结构,在2纳米以后,TSMC、英特尔正试图采用GAA(Gate-All-Around,全环绕栅极)纳米片(Namo-sheet)压层结构。英特尔称之为“RibbonFET”。此外,三星率先宣布已经从3纳米过度到GAA纳米层(三星称之为“MBCFET(Multi Bridge Channel FET)”)。

就14 节点而言,imec提案了原用于CMOS的Forksheet结构(将p型和n型纳米片晶体管成对排列,由于类似于用餐的叉子,所以命名为Forksheet),并一直在研发。就10节点而言,imec试图采用CEFT结构(Complementary FET,在硅表面垂直堆叠P-channel FET和N-channel FET),制作CMOS。在1纳米(10)以及以下节点,计划采用原子形状的沟道(Atomic Channel),其沟道采用厚度为1~多个原子层的2D材料。此外,imce所指的2D材料为半导体单层过渡金属二硫属化物(Dichalcogenide),化学式为MX2。此处的M为Mo(钼)、W(钨)等过渡金属元素。X为硫、Se硒、Te(碲)等硫硒碲化合物(16类元素),imec通过采用2D材料和High NA EUV,开拓了1纳米以下的工艺。

在上月的ITF大会上,半导体行业大脑imec(比利时微电子研究中心)公布的蓝图显示,2025年后晶体管进入埃米尺度(Å,angstrom,1埃 = 0.1纳米),其中2025对应A14(14Å=1.4纳米),2027年为A10(10Å=1nm)、2029年为A7(7Å=0.7纳米)。

当时imec就表示,除了新晶体管结构、2D材料,还有很关键的一环就是High NA(高数值孔径)EUV光刻机。其透露,0.55NA的下代EUV光刻机一号试做机(EXE:5000)会在2023年由ASML提供给imec,2026年量产。

不过,本月与媒体交流时,ASML似乎暗示这个进度要提前。第一台高NA EUV光刻机2023年开放早期访问,2024年到2025年开放给客户进行研发并从2025年开始量产。

据悉,相较于当前0.33NA的EUV光刻机,0.55NA有了革命性进步,它能允许蚀刻更高分辨率的图案。

分析师Alan Priestley称,0.55NA光刻机一台的价格会高达3亿美元(约合19亿元),是当前0.33NA的两倍。

早在今年7月,Intel就表态致力于成为高NA光刻机的首个客户,Intel营销副总裁Maurits Tichelman重申了这一说法,并将高NA EUV光刻机视为一次重大技术突破。随着硅基半导体不管逼近物理极限,业界都在寻求其他的替代材料。而近日台湾大学联手台积电、美国麻省理工学院的研究,发现了二维材料结合半金属铋可以实现极低的接触电阻,接近量子极限,并将这一研究发现发表于自然期刊,这对于1nm以下的半导体制程来说是一次巨大的突破。

当前主流半导体制程已经发展至3nm和5nm,乃至IBM也在近期推出了2nm,但单位面积内所能容纳的晶体管数目也已经逼近硅的物理极限,虽说制程突破受制于生产设备,却也有半导体材料的因素在其中。

石墨烯等二维材料自发现以来被视为下一代半导体的材料,但多数二维材料却因为高电阻与低电流的限制,一直无法取代硅基半导体。而麻省理工团队首先发现二维材料与半金属铋结合可以有效降低电阻,提升电流的传输效率。台积电技术研究部门随后对铋沉积制程进行了优化,最后台大团队利用造价数千万的氦离子束微影系统将元件通道成功缩小至纳米级,才得出这一研究成果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭