当前位置:首页 > 物联网 > 《物联网技术》杂志
[导读]摘要:给出一种基于ZigBee协议构建的智慧教室灯光控制系统的设计方法。该系统由信息感测节点、信息处理平台、继电器节点构成,从硬件、软件、通信协议及数据格式上分别对系统中的各组成部分进行了设计介绍。该系统在硬件、软件上均具有很高的灵活性和可扩展性。

引言

智慧教室灯光控制是物联网的一项重要应用。因此,从系统硬件、软件和协议数据格式上,对智慧教室的灯光控制系统进行全面的设计,对于物联网的应用推广和节能减排,都具有重要的应用示范价值与实用性意义。

1总体架构

智慧教室灯光控制系统的基本架构如图1所示。该系统由信息感测节点(ZigBee无线传感器节点)、智能处理平台以及继电器节点组成。系统中的三种功能节点采用ZigBee协议构成无线传感器网络(WSN)。智能处理平台在WSN中担任ZigBee协调器节点,信息感测节点及继电器节点担任ZigBee终端节点。

信息感测节点主要通过传感器技术实现对环境信息的感知及采集,如光照强度、人体感应数据,并通过ZigBee协议将采集结果传至信息处理平台。

信息处理平台中,ZigBee协调器负责接收感知数据,并将接收到的数据通过RS232串口传送到应用开发平台,应用开发平台对收到的采集结果进行分析、决策后,将控制命令从RS232发往ZigBee协调器,ZigBee协调器通过ZigBee无线通信协议将控制命令发送到继电器。

继电器节点通过ZigBee协议接收ZigBee协调器发来的控制命令,执行开或关灯的指令。

ZigBee无线通信协议不需要独立的硬件设备,而是以无线通信模块的形式,在信息感测节点、信息处理平台和继电器节点中均需要实现。

2硬件设计

2.1信息感测节点

信息感测节点硬件上由传感器、微处理器、无线通信模块、电池组成。图2所示是信息感测节点的组成图。在设计上,为了降低成本,并提高硬件的可扩展性和灵活性,信息感测节点的微处理器及无线通信模块可采用选用相同的ZB2430底板实现,其核心芯片是TI公司的CC2430,ZB2430电路原理图如图3所示。传感器选用插件式的硬件设计,通过ZB2430的1/O扩展口与ZB2430相连,信息感测节点只在传感器插件上不同。根据智慧教室灯光控制的实际需要,选用了光照、人体两类传感器,共两类信息感测节点。

2.2信息处理平台京更件

信息处理平台硬件上采用DMATEK的DMA210XP整合平台,其集成了应用开发平台和ZigBee协调器端功能,ZigBee协调器端接收从感测节点采集到的数据,并通过串口传输到应用开放平台,由其对感测数据做进一步的分析、处理和显示,其组成图如图3所示。

ZigBee协调器端采用DAMTEK的ZB2430-03实现,ZB2430-03的硬件组成与信息感测节点的ZB2430完全一致,只在软件上不同,通过在软件上定义ZB2430为从模块(终端)、

ZB2430-03为主模块(协调器),实现信息在两者间通信。

应用开发平台采用具有先进ARMCortexA8核心的SamsungS5PV210处理器,该处理器采用ARMCortexA8核心,DMA210XP应用平台结合ZigBee无线感测,实现智慧教室灯光控制的应用。

2.3继电器节点京更件

继电器节点硬件设计与信息感测节点硬件类似,但没有传感器模块。

3软件设计

3.1信息感测节点软件

信息感测节点的软件可采用嵌入式系统的开发方式与流程,开发工具为IAR。本系统共涉及光照、人体两类传感器,这两类传感器获取到的数据格式略有不同。具体如下:

相同部分:

#defineMAX_SEND_BUF_LEN128//定义发送缓冲区长度上限

staticuint8pTxData[MAX_SEND_BUF_LEN];//定义发送缓冲区的大小

/*填充发送缓冲区,对5类传感器均相同,开始*/

pTxData[0]=0xFF;

pTxData[1]=0xFD;

pTxData[3]=4;

pTxData[8]=0;

pTxData[9]=0;

pTxData[10]=CheckSum(pTxData,10);//校验和/*填充发送缓冲区,对2类传感器均相同,结束*/不同部分有光电传感器的数据获取与处理:

unsignedintADC_GetValue(void)//获取传感器采样数据

{

unsignedintadcValue=0;

adcValue=adcSampleSingle(ADC_REF_AVDD,

ADC_12_BIT,HAL_BOARD_IO_ADC_CH);

returnadcValue;

}

/*对采样数据的转换,开始*/

ADC_VALUE=ADC_GetValue()*3.3/16384/2;

pTxData[4]=(uint8)ADC_VALUE%10+48;

pTxData[5]=(uint8)(ADC_VALUE*10)%10+48;

/*对采样数据的转换,结束*/

pTxData[6]=0x00;//填充发送缓冲区

pTxData[7]=0x00;//填充发送缓冲区

人体传感器的数据处理:

pTxData[4]=HAL_INT_VAL();

pTxData[5]=0x00;

pTxData[6]=0x00;

pTxData[7]=0x00;

信息感测节点应用程序对传感器测量值的获取、转换、缓存及无线发送功能可采用如图4所示的程序流程来实现。

图4信息感测节点数据处理流程图

3.2信息处理平台软件

信息处理平台的ZigBee协调器模块通过ZigBee点对点无线通信协议,负责接收和汇聚各传感器采集到的感测信息,并将接收到感测数据通过RS232串口传输到应用开发平台;同时,负责从RS232串口接收从应用开发平台下达的控制命令,并通过ZigBee无线通信协议将控制命令发送到ZigBee继电器节点(电灯)。具体程序流程如图5所示。

3.3继电器节点软件设计

在本系统中,用ZigBee继电器模拟教室电灯,ZigBee继电器通过ZigBee点对点无线通信协议接收ZigBee协调器发来的控制命令,实现对各继电器(电灯)的打开及关闭控制。其ZigBee继电器程序流程如图6所示。

图6继电器节点程序流程图

4ZigBee点对点通信参数及数据格式设计

ZigBee点对点通信参数设计

对Zigbee点对点通信参数的设置,有RF_CHANNEL、PAN_ID、SENSOR_ADDR、COORD_ADDR四项。ZigBee无线传感器节点模块、ZigBee继电器模块、ZigBee协调器模块的RF_CHANNEL、PAN_ID设置一致;无线传感器节点模块的SENSOR_ADDR为无线传感器节点地址;无线传感器节点模块的COORD_ADDR为发送地址,要与协调器模块的COORD_ADDR设置一致;继电器模块的RELAY_ADDR为继电器地址,要与协调器模块的RELAY_ADDR设置一致。本设计采用的设置如下:

#defineRF_CHANNEL22//频道11~26

#definePAN_ID0x1122//网络id

#defineCOORD_ADDR0x5566//协调器地址

#defineRELAY_ADDR0x7788//继电器地址

ZigBee无线通信数据格式设计

4.2.1协调器接收格式

本设计的发送端传感器格式(byte1-byte10)如图7所示。

图7中,byte1,byte2:传感器端数据发送的固定头,固定为OxFA,0xFB;byte3:数据类型的标识,例0x01人体,0x02光照;byte4:为传感数据长度(统一为0x04);byte5-byte8:传感器采集到的具体数据;byte9:保留;byte10:byte1-byte9校验值(相加取低8位)。

4.2.2协调器发送数据格式

本设计的接收端为电灯(继电器),格式(byte1-byte10)如图8所示。

图8中,byte1,byte2:Coordinator端数据发送控制继电器命令的固定头0xFA,0xFB;byte3:Coordibator端数据发送对象,是继电器序号;0x01:发送命令给继电器1端,表示电灯1;0x02:发送命令给继电器2端,表示电灯2;0x03:发送命令给继电器3端,表示电灯3;0x04:发送命令给继电器4端,表示电灯4,以此类推;byte4:命令长度,固定为0x04;byte5:发送给继电器的命令内容(0x02为关闭,0x01为开启);byte6-byte9:保留;byte10:byte1-byte9校验值(相加取低8位)。

4.2.3电灯(继电器)应答数据格式

本设计的接收端,即协调器的格式(byte1-byte9)如图9所示。

图9中,byte1-byte4:表示收到的数据原值返回;byte5-byte8:应答码,固定为0xAA0xBB0xCC0xDD;byte9:是byte1-byte8的校验值(相加取低8位)。

5结语

智慧教室的灯光控制是物联网的一项重要应用,本文从硬件、软件和协议数据格式上对智慧教室的灯光控制系统进行了较为全面的设计,对物联网的应用推广、节能减排等方面都具有重要的应用价值与实用性,只需在软件上和传感器插件上做少量改动,本系统的应用还可进一步推广,如应用到仓储监控、智慧家居等方面,具有很强的可扩展性。

20211223_61c35901c9525__智慧教室灯光控制系统设计

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭