当前位置:首页 > 厂商动态 > 厂商文章
[导读]作为全球化的领先解决方案提供商,鸿腾精密(Foxconn Interconnect Technology,FIT)旨在构建互联互通,实现更美好的世界。FIT关键产品包含缆线组件、连接器、主动式光纤电缆、嵌入式光学模块、可插拔的收发器模块、天线、无线充电产品与组件、音频、电力与缆线配件等。 FIT是富士康科技集团最早成立的事业群。凭借在消费者洞察、行业趋势、设计、开发、研究、制造工程、生产、供应链方面出类拔萃的能力,服务横跨B2C与B2B的各种世界级品牌与自有品牌产品,是全世界技术趋势的先驱者,为消费者提供富有吸引力的用户体验。公司拥有7万多员工,2018年度销售额达40亿余美元。

挑战:

传统检测方法是用电子显微镜放大和人工目视检测外观瑕疵的方式,长期下来作业员识别率降低,无法保证精密连接器缺陷检测的质量和效率;

由于人工检测的方法导致标准不一致,易发生质量问题,给企业带来不利影响;

传统检测方法没有实现检测自动化,产生了大量人工成本。

效果:

实现外观瑕疵检测的自动化,减少企业成本;

整体检测能力大大提升,机台判定标准一致,完全避免了人为因素导致的检验问题;

实现了无人化智能工厂,有力支持了企业智能制造战略的实施。

作为全球化的领先解决方案提供商,鸿腾精密(Foxconn Interconnect Technology,FIT)旨在构建互联互通,实现更美好的世界。FIT关键产品包含缆线组件、连接器、主动式光纤电缆、嵌入式光学模块、可插拔的收发器模块、天线、无线充电产品与组件、音频、电力与缆线配件等。 FIT是富士康科技集团最早成立的事业群。凭借在消费者洞察、行业趋势、设计、开发、研究、制造工程、生产、供应链方面出类拔萃的能力,服务横跨B2C与B2B的各种世界级品牌与自有品牌产品,是全世界技术趋势的先驱者,为消费者提供富有吸引力的用户体验。公司拥有7万多员工,2018年度销售额达40亿余美元。

老方法难以解决复杂的外观瑕疵问题

目前,随着应用领域的飞速发展和市场规模扩大,对精密连接器的要求越来越高,逐步向微型化、高频率高速度无线传输、智能化等方向发展,需要精密连接器更小巧,更精密、趋于完美。因此,精密连接器对生产质量和精度的要求逐步提升,产品质量检测在精密连接器生产步骤中成为至关重要的环节。

精密连接器的生产过程工序比较复杂,原材料的选用、设备的精度、设备的参数、操作人员的手法、车间的温度、湿度等都有可能影响精密连接器的某一质量特性。

“精密连接器的缺陷遍布于本体的内外表面,缺陷种类多、形态多变、检测区域背景复杂,材质多样,而且检测涉及多个表面。”FIT的吴柏翰课长介绍说,“所以,管控参数较多,检测要求复杂繁琐。”

人工外观瑕疵检验

传统的精密连接器外观瑕疵检测主要靠线上品检员进行目检或半自动检验,这种检验方法存在效率低、成本高、人员重复性、漏检等问题,严重影响了产品的生产效率和质量。检测方式不到位易发生质量问题,不但会影响产品功能性,伤害客户对产品的购买信心。同时,也会造成客户投诉,返工甚至退单,给企业带来损失。

FIT凭借先进的研发和制造技术及自动化和分析、检测能力的优势,已成为众多国际知名客户的紧密合作伙伴。在产品质量管控上,FIT一直致力于三不政策:不接受不良、不制造不良、不流出不良。传统视觉检测虽然可以应对不那么复杂的外观检测,但是对于非常复杂的外观检测需求,技术有所欠缺,已经难以满足FIT的质量管控要求。

VisionPro Deep Learning化繁为简,实现缺陷检 测自动化

为彻底解决检测难题,提升工厂自动化生产水平,FIT在与多家视觉检测解决方案供货商了解沟通后,决定引进基于深度学习算法的AI检测技术。康耐视作为全球知名的机器视觉解决方案供货商,与FIT合作已久。经过调研,FIT发现,康耐视基于深度学习算法的VisionPro Deep Learning,在其综合检测能力、开发周期等各方面性能上,非常贴合FIT自动化生产线的检测要求。

检测画面

在瑕疵检测应用中,缺陷往往是没有规律的,传统视觉产品用代码难以去明确判断或分类不同种类瑕疵或对比度较低的瑕疵。而VisionPro Deep Learning的深度学习算法针对工业图像分析进行了优化,只需较少的瑕疵图像样本和较短的标注训练时间即可完成验证。

划伤NG图片

耳朵发黄NG图片,塑料损伤NG图片

脏污NG图片

VisionPro Deep Learning不但顺利解决了对于传统机器视觉过于繁重、复杂或者昂贵的应用,而且其灵活的图形化程序设计环境,使FIT的工程师们能够构建灵活自定义的深度学习解决方案。

“选择一个优秀的解决方案供货商,不仅仅要衡量其产品、技术的高质量高性能,而是否能够提供高质量的快捷服务保障,也是一项重要的考虑因素。在首次导入VisionPro Deep Learning过程中,康耐视为FIT提供了极大的帮助。”FIT的吴柏翰课长为康耐视所展现的优质技术支持服务点赞,“从面对面的技术教学、协助项目开发,一直到设备使用等全流程,康耐视都积极解决遇到的各种技术问题,并共同与我们一起来完善项目程序,确保了本次项目的成功实施!”

解决应用痛点,全面提升生产效能

目前,FIT已在自动化瑕疵检测设备中成功部署了60多套VisionPro Deep Learning。在实际运行中,其性能表现出色。整体检测能力,如漏检率控制在< 0.1%、过杀率<1~2%,检测准确率大大提升。

实施VisionPro Deep Learning后,FIT节省了100多位现场作业人员,且漏检率、人员判定差异等问题大大降低,完全避免了人为因素导致的检验问题。检测结果不但更客观稳定,而且大大降低了企业生产成本。

自动线外观检测设备

现在,全球精密连接器行业正在经历快速的技术发展,产品功能更好、兼容性更高,这使得连接器产品可应用于更多的情况及情景。而正是在康耐视VisionPro Deep Learning的帮助下,FIT的精密连接器可以轻松应对未来的各种复杂应用挑战,并为FIT抓住不同连接器终端市场的多样化发展趋势,提供了持续的创新技术支持。

“康耐视作为全球最早涉足机器视觉领域的企业,拥有丰富的深度学习部署经验,而且深刻理解客户需求,擅长解决应用痛点,是理想的机器视觉合作伙伴。”吴柏翰课长指出,“希望今后康耐视能打造出更加贴合自动化生产线的设备,帮助客户降低成本,实现共赢。未来双方将持续紧密合作,FIT将继续导入VisionPro Deep Learning,全面实现外观瑕疵检测的无人化!”

声明:本文仅代表作者本人观点,不代表本站观点,如有问题请联系站方处理。
换一批
延伸阅读

2022年5月24日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 分销商贸泽电子 (Mouser Electronics) 与电子工程和汽车领域的知名解决方案供应商Phoenix Contact联手...

关键字: 贸泽电子 连接器 储能设备

为了满足数据中心配电的高特定性需求,SCHURTER推出了其新型4750系列IEC Type F连接器模块。该模块提供多种功能,包括多个插座、背光选择以及端子配置,其涵盖的标准方案类型超过了以往任何产品。您可以选择2至7...

关键字: SCHURTER 数据中心 连接器

英国朴茨茅斯,2022 年 5 月 10 日——在不久前推出0.8 毫米间距板对板连接器(Archer .8)之后,Harwin公司再次将产品范围扩大到 0.5 毫米间距。Harwin 屡获殊荣的工程设计团队开发了这款最...

关键字: Harwin 连接器 嵌入式计算

2022年5月11日 – 提供超丰富半导体和电子元器件™的业界知名新品引入 (NPI) 分销商贸泽电子 (Mouser Electronics) 宣布第八次荣获TE Connectivity (TE) 颁发的年度全球卓越...

关键字: 贸泽电子 连接器 传感器

TX2 专用 Quartet 载板可在全带宽下轻松集成最多 4 个 USB3 机器视觉热像仪。Nvidia Jetson 深度学习硬件加速器可在紧凑型单板上实现完整的决策系统。此定制载板提供完全集成的 SOM 设计,无需...

关键字: Teledyne FLIR 嵌入式 连接器

2022年4月20日 – 专注于引入新品的全球半导体和电子元器件授权分销商贸泽电子 (Mouser Electronics) 荣获Amphenol SV Microwave 2021年度全球分销商奖。Amphenol S...

关键字: 贸泽电子 射频 连接器

2022年线缆连接器及组部件新产品研讨会汇聚国内知名品牌,射频线缆、5G天线、连接器、继电器、散热风扇、电池等等多品类精准命中需求,带您快速领略新品技术及行业前沿资讯。

关键字: 世强 连接器 显示器

理想空间的距离损耗由FRIIS公式决定,我们忽略公式细节、中间步骤,直接给出如下图1的结论。ST60A2的工作距离一般在1cm到10cm之间。从下图1的数据看,1cm的空间损耗是28dB,10cm的空间损耗是48dB。S...

关键字: 意法半导体 ST60A2 连接器

编辑精选

技术子站

关闭