当前位置:首页 > 电源 > 电源电路
[导读]电机和逆变器的使用在工业自动化、机器人、电动汽车、太阳能、白色家电和电动工具等应用中持续增长。伴随着这种增长是对提高效率、降低成本、缩小封装和简化整体设计的需求。虽然使用分立式绝缘栅双极型晶体管 (IGBT) 设计定制电机和逆变器功率电子器件以满足特定要求很有诱惑力,但从长远来看,这样做的成本很高,而且会延误设计进度。

电机和逆变器的使用在工业自动化、机器人、电动汽车、太阳能、白色家电和电动工具等应用中持续增长。伴随着这种增长是对提高效率、降低成本、缩小封装和简化整体设计的需求。虽然使用分立式绝缘栅双极型晶体管 (IGBT) 设计定制电机和逆变器功率电子器件以满足特定要求很有诱惑力,但从长远来看,这样做的成本很高,而且会延误设计进度。

相反,设计人员可以使用现成的 IGBT 模块,将多个功率器件组合到一个封装中。此类模块支持设计人员以最少的互连来开发紧凑的系统,从而简化组装,缩短上市所需时间,降低成本,并提高整体性能。配套使用合适的 IGBT 驱动器,使用 IGBT 模块就可以开发出高效、低成本的电机驱动装置和逆变器。

大多数三相逆变器在变频驱动器、不间断电源、太阳能逆变器和其他类似逆变器应用等应用中使用绝缘栅双极晶体管 (IGBT) 。三相逆变器的每一相都使用一个高侧和低侧 IGBT 向电机线圈施加交替的正负电压。电机的脉宽调制 (PWM) 控制输出电压。

如何在基于三相 IGBT 的逆变器设计中降低系统成本

三相逆变器还使用六个隔离栅极驱动器来驱动 IGBT。除了 IGBT 和隔离式栅极驱动器外,三相逆变器还包括直流母线电压检测、逆变器电流检测和 IGBT 保护,如过热、过载和接地故障。

在供暖、通风和空调 (HVAC)、太阳能泵和电器等许多终端应用中,成本和性能是具有挑战性的权衡取舍。

那么在不影响系统性能的情况下节省物料清单 (BOM) 成本的最佳方法是什么?这里有一些战术:

· 将高侧和低侧驱动器组合到一个封装中。三相逆变器需要六个 IGBT 栅极驱动器。我们可以为每个 IGBT 使用单独的栅极驱动器,但双通道栅极驱动器有助于提高设计灵活性并降低 BOM 成本。

· 使用自举为栅极驱动器供电。不用说,任何高压逆变器应用都需要在栅极驱动器的初级侧和次级侧之间进行隔离,以实现可靠运行。隔离式栅极驱动器的高端和低端可能需要不同的电源。自举电源不再为三相逆变器使用六个不同的隔离电源,而是将电源需求减少到只有一个,从而降低了总 BOM 成本和电路板空间。

· 使用简单的比较器保护 IGBT。我们可以通过检测电流和使用窗口比较器来实现简单的过载和短路检测。比较器输出可以通过 DISABLE 功能禁用 IGBT 栅极驱动器。

TI 新发布的 UCC21520 是一款增强型隔离式双通道栅极驱动器。具有 19ns(典型值)的同类最佳传播延迟、可编程死区时间和宽电压范围使其真正适合此类逆变器应用。

IGBT 外,IGBT 栅极驱动器和电流检测在确定三相逆变器级的成本和性能方面发挥着重要作用。考虑以下策略在电流检测电路中节省 BOM:

· 分流器。分流器取代了笨重且昂贵的霍尔和磁通门电流传感器模块,优化了传感电路的成本和空间。电流互感器也被考虑在内,但与分流器相比存在线性和性能问题。

· 同相电流感应可提供更好的感应性能(与支路电流感应相比)。同相电流检测意味着有恒定的电机电流流过分流器(与支路电流检测中的噪声开关电流相比),无论哪个 IGBT 正在开关。此外,很容易检测端子到端子短路和端子到 GND 短路。我们还可以使用两个分流器进行成本优化,并使用来自其他两个传感电路的数据在软件中计算第三相的电流。

· 考虑使用隔离放大器和分流器,而不是霍尔电流传感器。使用隔离式 Σ-Δ 调制器进行电流检测需要在软件或硬件中实现数字滤波器。隔离放大器可与具有内置 SAR ADC 的低成本微控制器连接。

· 简单的过流保护。具有快速响应时间(<5 至 6µs)的高带宽隔离放大器和比较器可为逆变器提供快速过流保护,从而允许我们在系统中使用具有成本效益的栅极驱动器。

AMC1301 是 TI 新发布的精密增强型隔离放大器。它针对与分流电阻器的直接连接进行了优化,并支持精确的电流控制。AMC1301 的高线性度和低温度漂移的失调和增益误差可节省系统级功耗并降低转矩脉动。具有 3µs 延迟和高侧电源丢失检测功能,适用于电机驱动应用。

新的TI Designs 具有电流、电压和温度保护的增强型隔离三相逆变器参考设计 (TIDA-00366)为额定功率高达 10kW 的三相逆变器提供了参考解决方案。图 1 是高级框图。

如何在基于三相 IGBT 的逆变器设计中降低系统成本 

1 :TIDA-00366 的高级框图

该设计包括 UCC21520 增强型隔离式双 IGBT 栅极驱动器、AMC1301 增强型隔离放大器和 TMS320F28027 MCU。通过使用 AMC1301 测量电机电流(与 MCU 的内部 ADC 接口)以及用于 IGBT 栅极驱动器的自举电源,可以降低系统成本。逆变器的设计具有过载、短路、接地故障、直流母线欠压和过压以及 IGBT 模块过温保护。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

逆变器是把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电(一般为220V,50Hz正弦波)的转换器。它由逆变桥、控制逻辑和滤波电路组成。

关键字: 电警棒 逆变器 电池

Holtek持续精进电磁炉产品技术开发,再推出更具性价比的电磁炉Flash MCU HT45F0005A/HT45F0035A。相较于前代产品提供更丰富的资源,如硬件辅助UL认证功能、硬件I²C可与面板通信及过电流保护及...

关键字: 电磁炉 MCU IGBT

随着电力行业的不断发展和进步,为了符合节能减排的社会发展趋势,发电系统逐渐采用可再生的新能源发电代替传统的发电模式。

关键字: 太阳能 逆变器 电力

光伏逆变器作为光伏发电系统的重要组成部分,跟一般逆变器的区别体现在其具备最大功率点跟踪(MPPT)功能与针对电网安全的低电压穿越能力。

关键字: 光伏 逆变器 低电压穿越

集中式逆变器是一种将多个太阳能电池板的电能转化为交流电的装置。通常安装在电站的中央,由多个电池板串联成一个直流电池组,再由集中式逆变器将直流电转化为交流电。

关键字: 集中式 组串式 逆变器

在电力电子与电气工程领域,逆变器和变压器都是不可或缺的重要设备。尽管它们都在电力转换和传输过程中发挥着关键作用,但它们在功能、工作原理和应用场景等方面存在着显著的差异。本文将从科技视角出发,对逆变器和变压器的区别进行深度...

关键字: 逆变器 变压器

随着可再生能源技术的不断发展和应用,逆变器作为能源转换和储存的核心设备,其在电力系统中的作用日益凸显。根据储能类型的不同,逆变器可以分为电化学储能逆变器和机械储能逆变器两大类。这两类逆变器在结构、原理和应用场景等方面存在...

关键字: 逆变器 可再生能源

随着全球能源结构的深刻变革,可再生能源的推广和应用已成为当今世界的发展趋势。在这一大背景下,逆变器作为连接可再生能源发电设备和电网的关键设备,其重要性日益凸显。本文旨在探讨逆变器的发展背景,分析当前市场现状,并展望其未来...

关键字: 逆变器 可再生能源

太阳能光伏发电作为一种清洁、高效的能源形式,正受到越来越多的关注和应用。在太阳能光伏发电系统中,逆变器和电池是两大核心组件,其性能直接影响到整个系统的运行效率和稳定性。本文将围绕太阳能光伏发电如何选用逆变器及电池进行深入...

关键字: 太阳能光伏 逆变器

确保逆变器的额定功率能满足负载设备的功率需求。避免过载使用,以免损坏设备。保持良好的通风。避免在高温、潮湿环境下使用,以免影响设备散热和性能。

关键字: 逆变器 额定功率 充电
关闭