当前位置:首页 > 消费电子 > 辰珵研究院

全球知名半导体制造商ROHM(总部位于日本京都市)确立了一种新电源技术“QuiCur”,可改善包括DC/DC转换器IC在内的各种电源IC的负载响应特性*1(以下称为“响应性能”,指后级电路工作时的响应速度和电压稳定性)。

近年来,在各种应用领域,数字化进程都在加速,随着所安装的电子元器件数量的增加,应用产品的设计工时也增加了。其中,电容器在很多应用(比如使电路稳定的应用)中被大量使用,希望减少其使用数量的需求与日俱增。此外,在电源电路中,为了减少规格变更时的设计工时,对响应性能优异、可实现预期稳定工作的高品质电源IC需求高涨。这些需求也可以说是对电源IC的基本要求,ROHM为了满足这些需求,确立了能够更大限度地追求电源IC响应性能的高速负载响应技术“QuiCur”。

为了实现稳定的电源功能,电源IC会内置一种通过始终监测输出电压并与IC内部的基准电压比较来微调输出电压的电路(以下称“反馈电路”)。如果这种反馈电路能够更快地响应,就可以使输入电压和负载电流*1等的波动造成的输出电压波动在短时间内恢复。另一方面,如果响应过快,就会造成电路工作不稳定,输出电压发生振荡,响应速度也会受到输出电容器的电容量(以下称“输出电容容量”)的影响,很难实现目标响应性能。

通过在电源IC中采用此次新开发的高速负载响应技术“QuiCur”,可以防止电源IC反馈电路不稳定,并能更大程度地实现目标响应性能。对于电源IC所需的输出电容器来说,不仅可以将电容量降至更低,减少元器件数量和电路板安装面积,还可对电容量和输出电压波动进行线性(常数为负比关系)调整,即使因规格变更导致电容量增加时,也可以轻松实现预期的稳定工作,因此,从元器件数量更少和运行更稳定两方面来看,都非常有助于显着减少电源电路的设计工时。

目前,ROHM正在推进将采用这种“QuiCur”技术的电源IC尽快投入市场,计划于2022年4月开始提供DC/DC转换器IC样品,于2022年7月开始提供线性稳压器样品。

<关于高速负载响应技术“QuiCur”>

QuiCur是根据实现了高速负载响应的ROHM自有电路“Quick Current”而命名的商标。使用该技术后,电源IC的反馈电路能够在稳定工作的前提下更大程度地实现目标负载响应特性(响应性能)。该技术具有以下特点,有助于减少应用产品电源电路的设计工时。

可减少容器数量和路板安装面

使用QuiCur技术可以快速响应输出电压相对于负载电流的波动,因此,可以减少电源IC所需的输出电容器容量,从而可减少元器件数量和电路板安装面积。与ROHM以往技术相比,用不到一半的电容器容量即可实现同等的响应性能。

2. 即使规格变更时也可轻松实现预期的稳定运行

随着输出电容容量的增加,输出电压稳定了,但瞬时响应性能(到开始反应所需的时间)却变差了。使用QuiCur技术,即使输出电容器容量增加,也不会改变瞬态响应性能,因此可以对输出电容器容量和输出电压波动进行线性(常数为负比关系)调整。即使因规格变更而需要更稳定的运行时(希望进一步降低输出电压波动时),也可以轻松实现预期的稳定运行。

<QuiCur技术详情>

为了更大程度地追求响应性能,QuiCur技术精细划分了响应速度(控制系统)和电压稳定性(校准系统)的信号处理任务,解决了以往电源IC反馈电路中存在的两个问题:“在不稳定区域前面的低频段产生不可用区域”、“过零频率*2(f0)会随输出电容器的容量而变化”。

针对第一个问题“产生不可用区域”,该技术通过在反馈电路中配置不会产生不可用区域的专用误差放大器*3而成功解决。针对第二个问题“过零频率变化”,该技术配置了第二级专用的误差放大器,并采用了一种可以通过电流驱动来调整其放大倍数(Gain)的技术。虽然过零频率会随所连接的输出电容器容量发生变化,但通过根据该变化调整放大倍数,可以将过零频率始终设置在不稳定区域和稳定控制区域之间的边界线上。将这两个误差放大器的作用分开来构建的系统,可以广泛地应用于具有反馈电路的DC/DC转换器IC和线性稳压器等电源IC。

<与超稳定控制技术“Nano Cap”的融合>

Nano Cap通过改善模拟电路的响应性能,并更大程度地减少布线和放大器的寄生因素,可对线性稳压器的输出提供稳定的控制,从而能够将输出电容器的容量降至以往技术的1/10以下,因此,可以实现比如不再需要线性稳压器输出侧的电容器,只需微控制器侧100nF的电容器即可稳定运行。仅凭QuiCur技术,只能将输出电容器容量降至µF数量级,但当QuiCur和Nano Cap技术结合使用时,则可降至nF数量级。

如欲了解有关Nano Cap的更详细信息,请访问:https://www.rohm.com.cn/support/nano

<术语解说>

*1) 负载响应特性(负载瞬态响应特性)和负载电流

从电源IC的角度来看,微控制器、传感器等后级的电路都可以看作是“负载”。当这些负载工作时,电流(负载电流)会波动,从而导致电源IC的输出电压下降。负载响应特性是指使负载电流波动导致下降的电压复原所需的响应时间和电源的稳定性。

*2) 过零频率(增益过零频率,增益交越频率)

在运算放大器和电源IC等处理反馈电路的半导体和应用电路中,电路的放大倍数(Gain)变为0dB时的频率。是一种表示负载响应特性和不振荡的电路稳定性(相位裕度)的指标。

*3) 误差放大器(Error Amplifier)

负责提取电源IC内部的基准电压和反馈电路电压之间的差值,根据这种提取的差值来控制电源输出级,并使电源IC的输出电压恢复至目标电压。

・“QuiCur”和“Nano Cap”是ROHM Co.,Ltd.的商标或注册商标。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭