当前位置:首页 > 电源 > 电源电路
[导读]当我第一次对电子产品感兴趣时,生活很简单。组件太大了,我不用显微镜就可以焊接它们。开关转换器以高达 25 kHz 的频率切换,数字电路都使用 5 V 电源电压,我遇到的所有计算机都使用 RS-232 串行接口进行通信。

当我第一次对电子产品感兴趣时,生活很简单。组件太大了,我不用显微镜就可以焊接它们。开关转换器以高达 25 kHz 的频率切换,数字电路都使用 5 V 电源电压,我遇到的所有计算机都使用 RS-232 串行接口进行通信。

RS-232 标准规定逻辑 0 由 5 V 和 25 V 之间的电压表示,逻辑 1 由 –5 V 和 –25 V 之间的电压表示。我的问题是,虽然我板上的几乎所有组件都只需要5V 电源,我仍然需要为我的 RS-232 接口生成这两个额外的轨道。

然后我遇到了 MAX232。 该设备是一个受启发的产品,它结合了两个线路驱动器、两个线路接收器以及一个正负电荷泵。由于那个坏孩子用 5 V 单电源供电,我可以生成我需要的额外电源电压并传输和接收串行数据。

电荷泵是有用的小型 DC/DC 转换器,它使用电容器而不是电感器来存储能量。电荷泵(chargepump)又称为开关电容DC-DC变换器(switchedcaPACi-torvoltageconverter),在和基于电感的DC-DC开关电源相比较的时候,又称之为无感式DC-DC电源变换器。它们可以在专用电荷泵器件中找到,例如 LM2775 / LM2776 器件,作为 TPS65150 等 LCD 偏置电源中的辅助轨 或者作为由几个二极管和几个电容器组合在一起的外部电路。

LM2775 是一款稳压开关电容倍增器,可产生低噪声输出电压。LM2775 可在 3.1V 至 5.5V 输入范围内提供高达 200mA 的输出电流,并在输入电压低至 2.7V 时提供高达 125mA 的输出电流。在低输出电流下, LM2775 可以通过在脉冲频率调制 (PFM) 模式下运行来降低其静态电流。通过将 PFM 引脚驱动为高电平或低电平,可以启用或禁用 PFM 模式。此外,当 LM2775 处于关机状态时,用户可以通过将 OUTDIS 引脚设置为高电平或低电平来选择将输出电压拉至 GND 或保持在高阻抗状态。

LM2775 采用 TI 的 8 引脚 WSON 封装,该封装具有出色的热性能,可防止部件在几乎所有额定工作条件下过热。

2.7V 至 5.5V 输入范围

固定 5V 输出

200mA 输出电流

无电感解决方案:仅需要 3 个小型
陶瓷电容器

关断将负载与 V IN断开

电流限制和热保护

2MHz 开关频率

轻负载电流期间的 PFM 操作(PFM
引脚拉高)


一般来说,电荷泵有:

· 简单,通常包含不超过两个二极管和两个电容器。

· DC/DC 转换器更宽容。

· 适用于数十毫安范围内的输出电流(但不适用于远高于 250 mA 的电流)。

· 效率低于基于电感器的 DC/DC 转换器,除非它们未经调节且开环运行。

1 是未稳压电荷泵的简化电路图。电荷泵分两个阶段工作:

· 在充电阶段,开关 S1 和 S4 断开,开关 S2 和 S3 闭合。电流流经 S2 和 S3 并将飞跨电容器 C FLY充电至电压 V I

· 在放电阶段,开关 S1 和 S4 闭合,开关 S2 和 S3 断开。C FLY的负端 现在在 V I  ,正端(比 V I 高)现在是 2V I。电流从 V I 流经飞跨电容器 C FLY 和开关 S1 和 S4。电荷从 C FLY转移 到输出电容器 C O以产生大约等于 2V I的输出电压。

使用电荷泵驱动电路-第 1 部分

1:简化的电荷泵框图(倍压器)

我们可以重新排列相同的四个组件(S1、S2、S3 和 S4)以生成大约等于 –V I的负输出电压 (参见图 2)。

使用电荷泵驱动电路-第 1 部分

2:简化的电荷泵框图(电压逆变器)

刚才描述的电路运行良好,但其输出电压不受调节。对于某些应用来说,这样一个简单的电路就足够了,但具有稳压输出的电荷泵更为有用。

调节电荷泵输出电压的常用方法是将可调电流源 I 1与开关 S1 或 S2 串联(在反相电荷泵的情况下)(参见图 3)。误差放大器 A1 调整 I 1的值, 直到输出电压正确。在稳态条件下,I 1 正好是 I O值的两倍。

使用电荷泵驱动电路-第 1 部分

3:不同的电荷泵集成度

请注意,一个简单的稳压倍压器只能在 V I 至 2V I范围内调节其输出电压。它不能产生低于 V I的输出电压。我们可以使用一些花哨的技巧来制作降压-升压型电荷泵,但这类器件比图 3 中所示的器件要复杂得多。



本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭