当前位置:首页 > 电源 > 电源电路
[导读]假设我们需要测试 1.5V、AA 尺寸的碱性电池。我们可以应用短路并测量电流,也可以测量开路电压,但两种方法都不能正确测试电池。大约 250 mA 的合适测试电流可为我们提供更合理的测试。我们可以在 1.5V 下使用 6Ω 电阻负载,如果电池状况良好,它会在 25°C 的环境温度下产生 1.46V 的输出电压。劣质电池可能产生低于 1.2V 的电压。给定负载,1.2V 的输出电流将为 200 mA 而不是 250 mA。电池将只有 80% 的满载电流。相反,我们可以使用图 1 中的电路 来产生恒流负载。

假设我们需要测试 1.5V、AA 尺寸的碱性电池。我们可以应用短路并测量电流,也可以测量开路电压,但两种方法都不能正确测试电池。大约 250 mA 的合适测试电流可为我们提供更合理的测试。我们可以在 1.5V 下使用 6Ω 电阻负载,如果电池状况良好,它会在 25°C 的环境温度下产生 1.46V 的输出电压。劣质电池可能产生低于 1.2V 的电压。给定负载,1.2V 的输出电流将为 200 mA 而不是 250 mA。电池将只有 80% 的满载电流。相反,我们可以使用图 1 中的电路 来产生恒流负载。


为测试电池提供恒流负载的电路方案

图 1 AA 或 AAA 尺寸电池的测试仪使用恒流负载。

点击放大

该电路使用 9V 电池和稳压器产生 5V 的稳定电源电压。根据该电压,电路使用 IC 1、IC 2和 Q 3产生与电池输出电压无关的恒定灌电流。我们选择的电流取决于电池大小。我们计算该电路的灌电流 I TEST =1/R 19 ×[V CC ×R 18 /(R 4 +R 18 )],其中 I TEST 是我们正在测试的电流,V CC 是电阻电压分频器 R 4 和 R 18。R两端的电压对于 AAA 和 AA 电池, 19 的范围应为 0.3 至 0.85V。晶体管 Q 3 应位于其有源区。电阻器 R 14 将 Q 3的基极电流限制在安全水平。

运算放大器 IC 2的合适选择也很重要。我们应该使用具有轨到轨输入和轨到轨输出的单电源运算放大器,例如Analog Devices的OP484ES或OP496GS。

OP184/OP284/OP484分别是单通道/双通道/四通道、单电源、4 MHz带宽放大器,具有轨到轨输入与输出特性。保证工作电压范围为3 V至36 V(或±1.5 V至±18 V)。

这些放大器非常适合要求交流性能与精密直流性能的单电源应用。带宽、低噪声与精度特性组合,使其适合滤波器和仪器仪表等各种应用。

其它应用包括便携式电信设备、电源控制与保护,以及用作具有宽输出范围传感器的放大器或缓冲器。要求采用轨到轨输入放大器的传感器包括霍尔效应传感器、压电传感器和阻性传感器。利用轨到轨输入和输出摆幅,设计人员可以在单电源系统中构建多级滤波器,并保持高信噪比。OP184/OP284/OP484的额定工作温度范围为−40°C至+125°C扩展工业温度范围。单通道OP184提供8引脚SOIC表贴封装。双通道OP284提供8引脚PDIP和SOIC表贴两种封装。四通道OP484提供14引脚PDIP和14引脚窄体SOIC两种封装。

当我们连接被测电池时,Q 2 开启,然后 Q 1开启,将来自 9V 电池的电压施加到稳压器。该动作点亮D 3,表示待测电池有足够的电压进行测试。LED D 4、 D 5和 D 6 指示电池的状态。表 1 显示了这些 LED 点亮所需的电压范围。


为测试电池提供恒流负载的电路方案

运算放大器 IC 2A、 IC 2C和 IC 2D 用作比较器,具有一定的滞后以确保运行稳定性。包括R 5、R 6、R 8、R 17和R 22的电阻分压器 设置电压电平。二极管 D 1 和 D 2 是可选的,但在我们需要在温度变化很大的室外操作电路时很有用。电阻器 R 15 保护 IC 2A、 IC 2C和 IC 2D的输入。


连接电池进行测试时,应至少测试 5 秒。 如果电池处于相对正常的状态,LED D 3会亮起。在这种情况下,开关 Q 1 为电池测试仪供电。由 IC 2A 和 Q 3组成的灌电流发生器 为被测电池加载,电阻分压器网络设置比较器电压。

我们可以添加一个可选的自检按钮来检查 9V 电池,以确保它有足够的电压来驱动电路。如果我们需要更准确的测量,我们还可以将数字万用表连接到万用表端子。我们可以使用合适的旋转开关或可变电阻器,并通过改变 R 4的值来改变测试电流的值, 以测试另一种类型或尺寸的电池。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭