当前位置:首页 > 电源 > 电源-能源动力
[导读]电池组是电动工具、踏板车和电动汽车 (EV) 等电池供电产品中最昂贵的组件之一。电池组性能极大地影响了电动汽车的车辆级关心,包括续航里程、电池组使用寿命和充电时间,更不用说车辆的安全性和可靠性。因此,电池管理成为深入研究和持续开发工作的主题也就不足为奇了。

电池组是电动工具、踏板车和电动汽车 (EV) 等电池供电产品中最昂贵的组件之一。电池组性能极大地影响了电动汽车的车辆级关心,包括续航里程、电池组使用寿命和充电时间,更不用说车辆的安全性和可靠性。因此,电池管理成为深入研究和持续开发工作的主题也就不足为奇了。

从车辆系统的角度来看,电池组的关键性能指标 (KPI) 包括直流链路电压、能量密度、比功率和电池预期寿命等参数。到目前为止,锂离子(Li-ion)电池提供了良好的效果;然而,锂离子化学对汽车电子设备的电池组“保养和供电”造成了相当大的负担。

锂离子电池的使用要求电池管理单元 (BMU) 在共模电压超过数百伏的嘈杂电气环境中“突破”测量精度的极限。除了监控电池的电压和温度之外,BMU 还必须执行电池平衡和库仑计数等关键功能,同时确保整个电池组在符合严格的 ISO 26262 功能安全要求的安全工作范围内工作。

为什么是锂离子电池?

能量密度 (Wh/l) 和比功率 (Energy/kg) 是 EV 电池设计的两个主要品质因数。这些品质因数由几个车辆级性能参数驱动;也许最重要的是每次充电的范围。为了优化每次充电的续航里程,能量存储必须紧凑且轻便。

能量密度越高,车内可输送的能量容量越大;由于更高的比功率,再加上更轻的有效载荷,可以增加车辆的续航里程。除了影响车辆续航里程外,电池组的紧凑性还为其他关键 EV 系统留出了空间,例如车载充电器和将电能转化为运动的牵引驱动装置。这使得在多个 EV 平台上流行的所谓“滑板”配置成为可能。

我们比较了几种常见的电池技术。目前,锂离子是明确的选择,它的使用在当今的汽车电气化中很普遍。尽管如此,锂离子电池也有缺点。充电很挑剔,很难衡量锂离子电池组的充电状态。

锂离子电池可能很棘手,正如悬浮滑板等消费产品的热失控问题所证明的那样。最后,锂离子是一项昂贵的技术,不仅因为构成电池的特殊材料,还因为为了优化性能和安全性而必须存在的电池和热管理系统的复杂性。

锂离子特性

我们来描绘了典型锂离子电池的充电和放电特性。一旦电池在充电过程中(甚至在放电时)达到饱和状态,电池电压在大部分操作范围内几乎保持恒定。平坦的放电曲线使其成为电动汽车的有吸引力的能源,因为电池在很宽的运行范围内提供几乎恒定的能量。

然而,这一特性以及其他内在品质给电池管理带来了挑战。更重要的是,电池特性在很大程度上决定了车辆的续航里程、电池使用寿命、安全性和车辆的可用性。例如,需要知道用户在充电前可以走多远。

不同的材料构成阳极/阴极,这会影响电池特性。例如,锂离子电池充电至 3.8 V 至 4.2 V,容差约为 ±50 mV,具体取决于所采用的阳极/阴极材料。当充电电流低于电池额定电流的 3% 时,电池被认为已充满电。虽然提高充电电流不会影响总充电时间,但它可以加速时间达到约 70% 容量的平台期。

事实上,将电池充电到低于 100% 的电量对于延长使用寿命是可取的,因为锂离子电池无法接受过度充电而不会造成电池损坏和/或安全性受损。因此,系统设计人员必须权衡范围/充电、电池使用寿命、安全性和充电时间等参数。

还有其他挑战和细微差别需要考虑。电池以阵列形式连接——串联和并联组合以增加电压和容量——这使管理过度充电或充电不足的问题变得复杂。BMU 实施“电池平衡”以确保电池组中的所有电池(串联连接的多个电池)实际上处于相同的充电水平。

出于多种原因,监测电池温度也很重要。充电过程中温度显着升高表明存在故障。此外,锂离子电池在低温(例如冷冻)下不能很好地充电。在这种情况下,BMU 可以加热电池进行补偿。

最后,即使充电和放电受到严格控制,电池的容量也会随着时间的推移而下降,因为它经历了许多充电和放电循环。电动汽车可以通过传达车辆剩余的里程而不是电池容量或充电状态来弥补这一点。一辆全新的汽车可能充电到 70%,放电到 30%。随着电池组老化和容量减少,BMU 可以扩大充电和放电窗口,以使车辆在车辆的使用寿命内保持其“完全充电”行驶范围。

电池单元管理

汽车 EV/混合动力电动汽车 (HEV) 电池包含数百个串联和并联的锂离子电池,从已经讨论的挑战中可以清楚地看出,只有通过适当的电池管理才能维持安全和寿命优化的操作。必须单独诊断和平衡串联中的每个单元。

如果目标是优化车辆级 KPI,则信号路径必须提供估计充电状态所需的精度。具体而言,由于电池的充电/放电曲线的平坦度,电池电压和电池组电流的测量精度至关重要。此外,电池管理解决方案有时会结合库仑计数——测量进出电池组的安培秒流量——作为交叉检查以估计整个堆栈的充电状态。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭