当前位置:首页 > 电源 > 电源-能源动力
[导读]设计师面临的首要选择是使用单电池还是双电池超级电容器。超级电容器是低压器件,典型的最大电池电压为 2.7V。具有 2 个串联电池的双电池超级电容器使该最大电压翻倍。单电池解决方案成本更低,需要的空间更少,并且不需要电池平衡。如果应用的最大-最小电压为 3V–2V,例如 BLE,则在降低的电压范围(例如 2.7V–2.0V)上运行该应用,并使用单个电池。如果应用最小电压大于最大单节电压,例如 GPRS 模块的 3.2V,那么双节超级电容器是直接提供峰值负载电流的超级电容器的最佳解决方案。

一.确定超级电容器的尺寸

确定超级电容器尺寸时的注意事项:

· 应用的最大和最小电源电压

· 支持峰值功率爆发持续时间所需的能量

· 峰值电流 x 超级电容器 ESR 引起的电压降

· 如果适用,在无光照的情况下支持应用程序的最长持续时间所需的能量

· 足够的净空,以允许随着时间的推移而老化。

二.单电池还是双电池超级电容器

设计师面临的首要选择是使用单电池还是双电池超级电容器。超级电容器是低压器件,典型的最大电池电压为 2.7V。具有 2 个串联电池的双电池超级电容器使该最大电压翻倍。单电池解决方案成本更低,需要的空间更少,并且不需要电池平衡。如果应用的最大-最小电压为 3V–2V,例如 BLE,则在降低的电压范围(例如 2.7V–2.0V)上运行该应用,并使用单个电池。如果应用最小电压大于最大单节电压,例如 GPRS 模块的 3.2V,那么双节超级电容器是直接提供峰值负载电流的超级电容器的最佳解决方案。

电容和 ESR

许多工程师只是简单地使用能量平衡来确定超级电容器的大小:

超级电容器能量,½ C(V init 2 – V final 2 ) = 负载能量……。(1)

E LOAD =平均负载功率 x 负载持续时间……………….. (2)

因此,C = 2 x E LOAD /(V init 2 – V final 2 ),其中 V init是超级电容器的初始电压,V final是超级电容器在峰值负载结束时可以放电到的最小电压。

但是,这种方法隐含的是 ESR = 0。如果 I LOAD x ESR << V final的电压降,这只是一个很好的近似值。有两种情况需要考虑: i) 恒流

在这种情况下,负载电流是恒定的,不随电压变化,因此随着超级电容器放电,负载电压下降,负载电流保持恒定。LED 就是这类负载的一个很好的例子。最终负载电压由下式给出:

V final = V init – I LOAD x ESR – I LOAD x T LOAD /C

该公式假设 I LOAD在脉冲持续时间 T LOAD内是恒定的。如果在持续时间为 T 的脉冲期间存在电流峰值,则超级电容器的大小应满足:

V final > V init – max[Iavge(t).t/C-ESR.i(t)], 0 ≤ t ≤ T LOAD

其中 I avge (t) 是周期 0 到 t 的平均电流,i(t) 是时间 t 的瞬时电流。

现在可以选择具有足够 C 和 ESR 的超级电容器以在持续时间 T LOAD内支持负载。

ii) 恒功率

在这种情况下,负载功率保持恒定,因此随着超级电容器放电和负载电压下降,负载电流增加以保持 V LOAD x I LOAD乘积恒定。DC:DC 转换器的输入是恒定功率负载,因此这将是能量收集应用中最常见的情况。设计人员需要求解图 5中的方程。

要正确设置超级电容器的尺寸,请设置 V final = V application_minimum + I LOAD .ESR 并使用上面的等式 (1) 和 (2)。

漏电流

重要的是超级电容器的漏电流<<太阳能电池提供的充电电流,否则超级电容器充电太慢,或者根本不充电,系统也会效率低下,浪费大量能量。漏电流为与电容成正比。它还严重依赖于电极箔材料(活性炭、粘合剂)和使用的隔膜。CAP-XX 的小型棱柱形超级电容器系列的漏电流约为 1µA/F。显示了 GA109 超级电容器随时间的泄漏电流:180mF、40mΩ、2.5V。

请注意,在超级电容器最初充电到最终平衡值后,泄漏电流会随时间衰减,在这种情况下约为 0.5µA << 太阳能电池充电电流。这是所有有机电解质超级电容器的特点。显示了从 0V 充电的超级电容器的漏电流。在所描述的太阳能应用中,一旦超级电容器最初充电,它只会经历浅放电以支撑负载,因此泄漏电流保持在平衡值附近。请注意,水性电解质超级电容器在充电后立即处于平衡泄漏电流,但其泄漏电流比有机电解质超级电容器大一个数量级。

老化

随着时间的推移,所有超级电容器都会随着 C 的损失和 ESR 的增加而老化。老化速度将取决于超级电容器的电压和温度曲线。上面的 C 和 ESR 计算应该是寿命终止值,初始 C 和 ESR 应该考虑到预期的 C 损失和 ESR 增加。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭