当前位置:首页 > 电源 > 电源电路
[导读]选择降压转换器中的输出电容通常基于所需的输出纹波电压水平。在许多情况下,计算出的电容可能相当小,只允许使用单个陶瓷电容器。此外,由于陶瓷电容器具有非常低的等效串联电阻 (ESR),因此它们对输出纹波的贡献将很小。这很好,因为它可以降低成本,所以电容越小越好。

选择降压转换器中的输出电容通常基于所需的输出纹波电压水平。在许多情况下,计算出的电容可能相当小,只允许使用单个陶瓷电容器。此外,由于陶瓷电容器具有非常低的等效串联电阻 (ESR),因此它们对输出纹波的贡献将很小。这很好,因为它可以降低成本,所以电容越小越好。

但是,如果在推进我们的设计之后,我们在测试期间发现负载瞬变导致输出电压下降到无法接受的低水平怎么办?在这种情况下,唯一的解决方案是为输出加载更多电容,从而强制采用新的印刷电路板 (PCB) 布局。

我有一个简单的计算可以防止这种灾难。


电源提示:计算负载瞬态的电容

图 1:具有陶瓷输出电容器的TPS54620同步降压转换器

TPS54620采用热增强型3.50 mm x 3.50 mm QFN封装,是一款功能齐全的17-V、6-a同步降压转换器,通过高效率和集成高端和低端MOSFET,对小型设计进行了优化。通过电流模式控制(减少元件数量)和选择高开关频率(减少电感器的占地面积),进一步节省空间。

输出电压启动斜坡由SS/TR引脚控制,该引脚允许作为独立电源或在跟踪情况下运行。通过正确配置启用和开漏电源良好引脚,也可以进行电源排序。高侧FET上的逐周期电流限制可在过载情况下保护器件,并通过低侧源电流限制得到增强,从而防止电流失控。还有一个低侧下沉电流限制,关闭低侧MOSFET以防止反向电流过大。当模具温度超过热关机温度时,热关机禁用零件。

图 1 详细介绍了具有显着更多输出电容的更新设计。为了真正了解负载瞬态性能的情况,我创建了图 2 所示的仿真模型。我使用该模型绘制了开环和闭环输出阻抗和环路增益(或转换器的带宽)。开环输出阻抗只是在禁用反馈的情况下查看转换器输出的阻抗。由于该设计使用电流模式控制,因此电感器充当恒流源,不会出现在阻抗图中。但是,如果此设计使用电压模式控制,则开环输出阻抗图将在 LC 谐振频率处出现峰值。

电感的影响不容忽视。较小的电感值允许转换器在瞬态期间更快地增加其输出电流,并且其大小不应过大以至于低于带宽。图 2 中的开环输出阻抗图被建模为单个 58µF 输出电容器与小 ESR 和引线电感串联。两个 47µF 6.3V 电容和 3.3VDC 偏置的有效输出电容为 58µF。该图看起来具有 -1 斜率的电容性,直到它在 500KHz 以上变为电感性。


电源提示:计算负载瞬态的电容

图 2:显示闭环输出阻抗的TPS54260仿真模型

闭环输出阻抗是开环阻抗除以一加环路增益。转换器的带宽是环路增益等于 1 的地方。高于此频率,反馈对输出阻抗几乎没有好处,因为开环和闭环图会收敛。在转换器带宽以下,反馈环路中的大增益会降低有效输出阻抗。闭环阻抗的峰值与环路带宽密切相关。这一点很重要,因为负载瞬态导致的输出电压变化等于该阻抗乘以负载阶跃。由于该阻抗与转换器带宽处的输出电容器阻抗的幅度几乎相同,因此我们可以使用它来近似负载阶跃响应。


电源提示:计算负载瞬态的电容

图 3:仿真表明闭环输出阻抗在环路带宽频率附近达到最大值


电源提示:计算负载瞬态的电容

图 4:1.75A 负载瞬态的电路测试导致 115mV 的输出电压变化

电容器的阻抗为 Z = 1 / (2π × f × C),因此如果将其设置为等于 ΔVout/ΔItran,则可以得到公式 1 所示的负载阶跃近似值:


电源提示:计算负载瞬态的电容(1)

图 4 显示了 1.75A 负载阶跃和相应 115mV 输出电压下降的实验室测试。公式 1 使用测得的 38KHz 带宽,估计为 126mV。

公式 1 可以提供负载电流瞬态所需的陶瓷输出电容的合理估计值。在许多情况下,这个计算出的电容值可能明显大于低稳态纹波电压所需的电容值。我们只需要很好地估计转换器的带宽。请记住,具有高 ESR 的电容器(或使用混合电容器类型)可能会增加预期电压,因此可能需要格外小心(或模拟)。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭