当前位置:首页 > 电源 > 电源
[导读]对电源电路的需求相互矛盾:更高功率但更冷;效率更高但体积更小;更快的开关,但更低的噪音。再加上在机械和极端温度下更高的可靠性和更长的使用寿命。在 3 月于休斯顿举行的最新应用电力电子会议 (APEC) 上,ADI 公司 (ADI) 展示了与 µModule 稳压器相关的不同演示,展示了这些解决方案的优势,例如更小尺寸、高效散热以及非常低、高频率电磁干扰(电磁干扰)。


对电源电路的需求相互矛盾:更高功率但更冷;效率更高但体积更小;更快的开关,但更低的噪音。再加上在机械和极端温度下更高的可靠性和更长的使用寿命。在最近举行的最新应用电力电子会议 (APEC) 上,ADI 公司 (ADI) 展示了与 µModule 稳压器相关的不同演示,展示了这些解决方案的优势,例如更小尺寸、高效散热以及非常低、高频率电磁干扰(电磁干扰)。在接受 Power Electronics News 采访时,ADI 的 μModule 电源产品业务发展总监 Afshin Odabaee 和产品营销工程师 Bhakti Waghmare 指出了电力行业的最新进展和挑战。

ADI 的 µModule 稳压器技术

µModule 产品组合包括不同的子类别,例如隔离式转换器;逆变器;降压、升压和降压-升压稳压器;电池充电器;LED驱动器;和具有数字电源系统管理功能的稳压器。

ADI 的 µModule 稳压器和 DC/DC 电源产品是集成了高性能模拟 IC、功率晶体管和无源元件的系统级封装电源管理解决方案。所有电源功能都封装在一个紧凑且热增强的 LGA 或 BGA 封装中。

“在 APEC 2022 上,我们专注于微模块监管机构,专注于我们今年所做的工作,”Odabaee 说。“除此之外,我们还专注于静音开关技术,为正常和低噪声应用创建微型模块稳压器。”

静音开关技术允许功率器件在高开关频率下运行,而不会影响高效率并显着降低 EMI 辐射。这允许用户将 µModule 稳压器放置在非常靠近负载的位置,因为开关稳压器产生的噪声可以忽略不计。通过降低寄生电感并实现磁场消除,可最大限度地减少 EMI 辐射,并使设计更加紧凑。封装寄生电感的降低是通过消除长键合线来实现的,长键合线会引起寄生电阻和电感。热回路产生的相反磁场相互抵消,从而减少 EMI 辐射。

Silent switcher µModule 稳压器将使开关模式电源更容易通过多种抗噪标准,例如 CISPR 22 B 类(工业、通信)和 CISPR 25 5 类(汽车)。这些设备的关键因素是:

· 高效转换,即使在高于 2 MHz 的开关频率下,对转换效率的影响也可以忽略不计

· 内部旁路电容器可降低 EMI 辐射并使解决方案具有更紧凑的占位面积

· PCB 上的可用空间更多,所需层数减少

通过结合静音开关技术、高开关频率和多种工作模式,可以最大限度地降低 EMI,使这些器件成为噪声敏感应用的正确解决方案。提供四路可配置输出,静音开关稳压器可以替代两个、三个或四个单输出竞赛模块。

“静音切换器技术是 ADI 公司的一项重要成就;此外,我们正在通过创新的封装技术改善我们产品的散热,”Odabaee 说。“因此,我们可以在更小的设备中包含更多的输出功率能力,而不会对其进行过多加热。”

这些稳压器在改进热管理的同时可以更小的原因是因为热量从 µModule 封装的顶部和角落排出。这种称为组件封装 (CoP) 的技术可以更快地冷却微模块稳压器,从封装的顶部、四个侧面和底部去除热量。CoP 技术的好处是更小的 PCB 占位面积、更高的功率和更好的热管理。

放置在封装顶部的电感器,充当散热器,从 FET 中吸收热量。根据热力学定律,热量将移动到较冷的区域,而较冷的区域恰好是电感器。因此,通过电感器的直接气流可以非常有效地冷却设备。通过在封装顶部集成散热器进一步改进了热管理,这也实现了更高的功率密度。

µModule 产品系列的另一个相关特性是电流共享,它允许组合多个器件以提供更高的输出电流。例如,LTM4700 是一款双通道 50A 或单通道 100A 降压 µModule(电源模块)DC/DC 稳压器。电流模式架构可在 100-A 模块之间实现 ±3% 的准确电流共享。精确的电流共享产生了一个电源,可以在多个设备之间均匀地散发热量。电流共享对于可扩展性至关重要。通过并联八个 LTM4700 µModule 稳压器,可以将 800 A 的共享电流提供给处理器、FPGA 和 ASIC 等负载。应用包括 PCIe 板、通信基础设施、云计算、光学、医疗、工业以及测试和测量设备。

“我们在 µModule 架构中为 DC/DC 稳压器使用电流模式架构,”Waghmare 说。“当您使用电流模式与电压模式时,电流共享非常精确。此外,您不会让一个调节器加热而另一个调节器处于低温状态,因为热量均匀地分布在所有调节器上。”

像 LTM4700 这样的 µModule 稳压器在环境温度下可以提供 95–97 A 的电流,在器件冷却时可以提供 100 A 的电流。这在热管理方面确实是一项了不起的成就,因为可以在连续运行模式下保持当前水平。

封装技术的进步极大地缩小了电源调节器的尺寸。微型模块稳压器具有低于 2 mm (1.18–1.92 mm) 的超薄外形,允许设计人员利用电源电路 PCB 背面的空白区域,从而为其他组件腾出顶部空间。超薄微模块封装的另一个好处是它可以放置在非常靠近小型设备的位置,例如 FPGA、GPU、ASIC 和处理器,同时共享一个公共散热器或冷板。

µModule 稳压器配有 PMBus/SMBus/I 2 C 数字接口,用于控制、遥测和监控操作参数。控制和监控功能包括:

· 输出电压监控、排序和裕量

· 电流监测

· 温度监测

· 故障记录

此功能通过严格控制电压精度并支持远程调试、故障报告、日志记录和对故障的快速反应,有助于提高系统可靠性。

ADI 的 μModule 电源产品业务发展总监 Afshin Odabaee 和产品营销工程师 Bhakti Waghmare 指出了电力行业的最新进展和挑战。


ADI 的 µModule 稳压器技术

µModule 产品组合包括不同的子类别,例如隔离式转换器;逆变器;降压、升压和降压-升压稳压器;电池充电器;LED驱动器;和具有数字电源系统管理功能的稳压器。

如图 1 所示,ADI 的 µModule 稳压器和 DC/DC 电源产品是集成了高性能模拟 IC、功率晶体管和无源元件的系统级封装电源管理解决方案。所有电源功能都封装在一个紧凑且热增强的 LGA 或 BGA 封装中。

“在 APEC 2022 上,我们专注于微模块监管机构,专注于我们今年所做的工作,”Odabaee 说。“除此之外,我们还专注于静音开关技术,为正常和低噪声应用创建微型模块稳压器。”

静音开关技术允许功率器件在高开关频率下运行,而不会影响高效率并显着降低 EMI 辐射。这允许用户将 µModule 稳压器放置在非常靠近负载的位置,因为开关稳压器产生的噪声可以忽略不计。通过降低寄生电感并实现磁场消除,可最大限度地减少 EMI 辐射,并使设计更加紧凑。封装寄生电感的降低是通过消除长键合线来实现的,长键合线会引起寄生电阻和电感。热回路产生的相反磁场相互抵消,从而减少 EMI 辐射。

Silent switcher µModule 稳压器将使开关模式电源更容易通过多种抗噪标准,例如 CISPR 22 B 类(工业、通信)和 CISPR 25 5 类(汽车)。这些设备的关键因素是:

· 高效转换,即使在高于 2 MHz 的开关频率下,对转换效率的影响也可以忽略不计

· 内部旁路电容器可降低 EMI 辐射并使解决方案具有更紧凑的占位面积

· PCB 上的可用空间更多,所需层数减少

通过结合静音开关技术、高开关频率和多种工作模式,可以最大限度地降低 EMI,使这些器件成为噪声敏感应用的正确解决方案。提供四路可配置输出,静音开关稳压器可以替代两个、三个或四个单输出竞赛模块。

“静音切换器技术是 ADI 公司的一项重要成就;此外,我们正在通过创新的封装技术改善我们产品的散热,”Odabaee 说。“因此,我们可以在更小的设备中包含更多的输出功率能力,而不会对其进行过多加热。”

这些稳压器在改进热管理的同时可以更小的原因是因为热量从 µModule 封装的顶部和角落排出。这种称为组件封装 (CoP) 的技术可以更快地冷却微模块稳压器,从封装的顶部、四个侧面和底部去除热量。CoP 技术的好处是更小的 PCB 占位面积、更高的功率和更好的热管理。

放置在封装顶部的电感器,充当散热器,从 FET 中吸收热量。根据热力学定律,热量将移动到较冷的区域,而较冷的区域恰好是电感器。因此,通过电感器的直接气流可以非常有效地冷却设备。通过在封装顶部集成散热器进一步改进了热管理,这也实现了更高的功率密度。

µModule 产品系列的另一个相关特性是电流共享,它允许组合多个器件以提供更高的输出电流。例如,LTM4700 是一款双通道 50A 或单通道 100A 降压 µModule(电源模块)DC/DC 稳压器。电流模式架构可在 100-A 模块之间实现 ±3% 的准确电流共享。精确的电流共享产生了一个电源,可以在多个设备之间均匀地散发热量。电流共享对于可扩展性至关重要。通过并联八个 LTM4700 µModule 稳压器,可以将 800 A 的共享电流提供给处理器、FPGA 和 ASIC 等负载。应用包括 PCIe 板、通信基础设施、云计算、光学、医疗、工业以及测试和测量设备。

“我们在 µModule 架构中为 DC/DC 稳压器使用电流模式架构,”Waghmare 说。“当您使用电流模式与电压模式时,电流共享非常精确。此外,您不会让一个调节器加热而另一个调节器处于低温状态,因为热量均匀地分布在所有调节器上。”

像 LTM4700 这样的 µModule 稳压器在环境温度下可以提供 95–97 A 的电流,在器件冷却时可以提供 100 A 的电流。这在热管理方面确实是一项了不起的成就,因为可以在连续运行模式下保持当前水平。

封装技术的进步极大地缩小了电源调节器的尺寸。微型模块稳压器具有低于 2 mm (1.18–1.92 mm) 的超薄外形,允许设计人员利用电源电路 PCB 背面的空白区域,从而为其他组件腾出顶部空间。超薄微模块封装的另一个好处是它可以放置在非常靠近小型设备的位置,例如 FPGA、GPU、ASIC 和处理器,同时共享一个公共散热器或冷板。

µModule 稳压器配有 PMBus/SMBus/I 2 C 数字接口,用于控制、遥测和监控操作参数。控制和监控功能包括:

· 输出电压监控、排序和裕量

· 电流监测

· 温度监测

· 故障记录

此功能通过严格控制电压精度并支持远程调试、故障报告、日志记录和对故障的快速反应,有助于提高系统可靠性。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭