当前位置:首页 > > 瑞纳捷
[导读]咱搞硬件的,应该都使用过晶振,上次写开关电源环路的零极点的时候,忽然想到晶振是自己起振的,如果从环路的角度看,应该就是利用的环路不稳定的特性,产生自激振荡。

咱搞硬件的,应该都使用过晶振,上次写开关电源环路的零极点的时候,忽然想到晶振是自己起振的,如果从环路的角度看,应该就是利用的环路不稳定的特性,产生自激振荡。

除此之外,我又想到下面这些问题:

那么我们使用晶体的时候,电路的环路的传递函数是怎么样的呢加密芯片

为什么只有晶振的固有频率能振荡起来?

为什么改变匹配电容,就能改变频偏?

为什么晶振电路有的要串电阻,有的没有?有的要并联1M电阻,有的没有?

既然有了兴致,那就借这个机会把晶振的内容好好梳理一下,先从基础开始吧。

晶振分类,低功耗MCU,

首先,晶振一般分为两种,一种叫有源晶振,一种叫无源晶振。

有源晶振也叫晶体振荡器,Oscillator;无源晶振有时也叫无源晶体,Crystal,晶体谐振器。至于哪个名字更专业,更准确,我觉得无需争论,名字只是代号而已,大家工作中沟通能知道说的是什么就行。

简单说有源晶振自己供上电就能输出振荡信号,无源晶体必须额外增加电路才能振荡起来。

以上分类是从使用上面来说的。如果我们单看晶振的内部构造,就会发现,有源晶振内部是包含了一个无源晶振,然后再将阻容,放大等电路也包含进去,整体封装好再给我们用。安全芯片

有源晶振内部构造包含了无源晶振,所以,一般来说,有源晶振是比无源晶振是要贵的。另外一方面,我们只要了解了无源晶振的特性,有源晶振也就差不多了,毕竟,有源晶振可以看成是无源晶振做成的一个具体电路,供上电,就能输出振荡信号了。

所以,下面我们就只看无源晶振(晶体谐振器)

晶体谐振器构造

首先,晶体谐振器里面的晶体,是指的石英晶体,化学式是二氧化硅SiO2。石英的特点是:热膨胀系数小,Q值高,绝缘。

石英可以做成晶体谐振器,主要是利用了压电效应。压电效应分为正压电效应和逆压电效应,以下是百度百科的定义:

晶体的构造示意图:

上图左边是晶体构造的示意图,右边是我们常见的晶振的符号,二者是不是很像?

根据对前面压电效应的理解,晶体可以将电能转化为机械能,然后机械能又能转化为电能。如果给晶体通上交流电,那不就是一会收缩,一会儿膨胀,这不就是机械振动吗?

我们知道,机械振动的物理尺寸和结构固定之后,它本身一般就有一个固有的振动频率。当外加信号的频率与固有振动频率相等时,就会发生共振,产生谐振现象。

显然,晶振的频率,说的就应该是这个固有振荡频率。再从无源晶体也叫“晶体谐振器”,这个“谐振”,应该就是这个意思吧。

除此之外,既然工作原理是机械振动,那么性能自然跟晶体的尺寸和结构非常大的关系。这个我也查了一下,确实如此

晶振频率与切片厚度,切割工艺的关系

切割工艺,就是对晶体坐标轴某种角度去切割。切型有非常多的种类,因为石英是各向异性的,所以不同的切型其物理性质不同,切面的方向与主轴的夹角对其性能有非常重要的影响,比如:频率稳定性,Q值,温度性能等等。

常见的切割类型有两种,AT和BT切。

同种频率的晶振,AT切比BT切的温度系数要小,切片厚度要薄,但是Q值比BT切要低。下面是晶体频率同切片厚度,切割类型的关系:

晶振手册中,也会给出切割类型,不知道兄弟们有没有关注这个参数呢?

特殊的晶振---32.768Khz

从上面看出,AT切的20Mhz晶振的切片很薄,只有0.083mm,但是频率降低到32.768Khz,如果还是AT切的话,厚度就是:

0.083mm*20Mhz/32.768Khz=50.66mm。

显然,这个尺寸太大了。

我们现实中看到的32.768khz的晶振显然是没有这么大的,所以可以肯定的是,32.768Khz的晶振肯定不是AT或是BT切,应该是别的方式。

32.768Khz一般是音叉的结构,就是下面这种:

我想,可能就是因为常规的AT,BT切片方式做不了低频的晶振(尺寸太大),所以这种32.768Khz这样的采用这种音叉结构。

这让我想起当年一开始使用32.768Khz晶振的时候,被迫选了个MC-146封装的,当时还觉得奇怪:别的晶振都能做成3225这种封装的,就你搞特殊,封装长这么奇怪。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭