当前位置:首页 > 电源 > 电源电路
[导读]数据中心是支持不断增长的数据交换和数据存储需求所必需的,如今已成为全球网络基础设施和计算设施的基本组成部分。2018年数据中心整体用电量已达205TWh,几乎占全球电力供应的1%。

数据中心是支持不断增长的数据交换和数据存储需求所必需的,如今已成为全球网络基础设施和计算设施的基本组成部分。2018年数据中心整体用电量已达205TWh,几乎占全球电力供应的1%。

数据中心由于电力负荷大、性能非线性等特点,对电网影响较大,短期内用电需求波动明显。2因此,分析数据中心负载特性、评估电网动态性能和暂态稳定性如何受到影响非常重要。为此,需要一个准确完整的数据中心电源模型,并需要开发一个反映动态性能的电源模拟器或仿真器。大多数仿真和仿真平台包括 PSCAD 和 Matlab Simulink 等数字仿真工具、RTDS 和 Opal-RT 等实时数字仿真器,以及带有缩小原型或硬件测试台的基于模拟的仿真工具。尽管模拟仿真器更昂贵、更笨重且更难安装,但它们提供了更准确的结果。3本文提出了一种基于转换器的数据中心配电系统实时功率仿真器。该电源仿真器基于 NSF/DOE 工程研究中心开发的硬件测试平台 (HTB) 平台,旨在克服数字仿真器和传统模拟仿真器所带来的问题。HTB 是基于多个转换器的可重构实时电网仿真器,用于执行实际功率测试和仿真具有广泛时间尺度(从微秒到秒)、更高的鲁棒性、更少的计算资源以及模拟精确瞬态的能力的电网回复。通过对互连的三相电压源逆变器 (VSI) 进行编程,可以模拟发电机、电池储能系统和电力负载等不同的功率设备。点击这里阅读原文。4

工作原理

一种常见且广泛使用的数据中心交流配电系统如图 1 所示。5供电系统包括集中式不间断电源 (UPS)、配电单元 (PDU)、机架级电源单元 (PSU)、服务器板和负载。空气冷却系统包括冷却塔、冷却器、水泵、机房空气处理器 (CRAH) 和服务器机房风扇。


电源仿真器预测数据中心动态性能图 1:数据中心的典型交流配电系统

为了提高系统用电效率和保持服务器可靠运行,数据中心通常采用多模式运行。使用以下三种主要操作模式:

1. 正常生态模式,当市电在可接受的限制范围内时使用,以通过 PDU 和 PSU 直接支持服务器负载。在此模式下,UPS 被旁路并在轻负载下运行。

2. 双转换模式,当市电电压不在允许范围内但仍在 UPS 输入范围内时使用。在此模式下,UPS 开启以调节电源并为服务器负载供电。

3. 电池模式,在发生电源故障或重要电网中断时使用。在此模式下,UPS 与电网断开连接,备用电池为逆变器提供所需的直流电源。服务器负载由 UPS 持续供电,直到市电恢复。

在电力严重中断的情况下,冷却系统与电网断开,CRAH由UPS备用电源承载,以保持空气流通,直到交流电源恢复。

平均模型

数据中心可以通过不考虑开关纹波的非线性平均模型来表示。在连续导通模式 (CCM) 运行中,UPS 的平均模型(如图 2 所示)包含前端升压功率因数校正 (PFC) 整流器、VSI、DC/DC 转换器和电池用于储能的包装。UPS 电池组由 182 节锂离子电池的两个并联电池组组成。使用适当的数学方程来模拟电池的充电和放电过程。


电源仿真器预测数据中心动态性能

图 2:UPS 平均模型

在 CCM 操作中,PFC 转换器(PSU 前端)的平均模型如图 3 所示。其目的是提高功率因数并提供直流母线电压调节。


电源仿真器预测数据中心动态性能

图 3:PFC 平均模型

由于具有宽输入变化的高效率运行,LLC 谐振转换器通常用于隔离式 DC/DC 级。在该模型中,LLC 转换器被简化为受控电源负载,具体取决于服务器负载。

关于冷却系统,使用聚合并网感应电机来表示冷却塔、冷却器和水泵,而 CRAH 则由基于两级变频驱动 (VFD) 的电机建模(图 4)。



电源仿真器预测数据中心动态性能

图 4:基于 VFD 的电机模型

总服务器负载是基于线性模型估计的,服务器利用率为:

P tot,server = N rack × N server × P server

离散模型

下一步涉及通过数字化将非线性平均模型转换为离散时间版本。需要一个具有显式输入变量和输出变量的广义模型,在 HTB 平台的 VSI 数字信号处理器上实现所有数据中心模型和控制功能。

首先,整个非线性平均模型以 0.2 毫秒的采样周期数字化并转换为离散时间方程。随后,针对数据中心电源仿真器提出了一个具有顶层控制的广义模型,如图5所示。已知端电压(V t)和电网频率(f),顶层控制决定运行模式根据 V t值。在每一级模型中,输入变量是前一级的输出电压,而输出变量是计算得到的输入电流,将传递到下一级。最后,顶层控制更新电网终端电流(i t)并开始新的运行周期。

电源仿真器预测数据中心动态性能

图 5:具有顶层控制的广义模型

在 HTB 上模拟的数据中心如图 6 所示。


电源仿真器预测数据中心动态性能

图 6:HTB 上数据中心仿真器的结构

实验结果与分析

在 Matlab Simulink 中开发了数据中心的仿真模型,并将其结果与图 6 所示的数据中心电源仿真器实现进行了比较。

实验结果如图 7-9 所示,其中每个图指的是不同的电压暂降事件,因为这是最常见的电网干扰之一。比较波形包括端电压幅值(V t,pu)、端有功功率和无功功率(P t,pu和 Q t,pu)、电源交流输入电压(V ac _ PSU,pu)和电源直流母线电压(V dc _ PSU,pu )。图 7 显示了端电压有 7% 压降的情况。由于端电压不超过允许的输入范围,数据中心系统一直工作在正常模式。然而,当 V t,pu冷却系统中感应电动机动态变化的影响。当发生 26% 的电压暂降时(图 8),数据中心模式在t = 2.5 秒的 500 毫秒后从正常经济模式切换到双重转换。同时,UPS 从非常轻的服务器负载切换到重负载,导致瞬态响应和随之而来的 V t,pu波动。由于突然的电压变化,数据中心在电压骤降的开始和结束时都会执行瞬态功率变化。


电源仿真器预测数据中心动态性能

图 7:7% 电压暂降 1 秒的实验和仿真结果


电源仿真器预测数据中心动态性能

图 8:26% 电压暂降 1 秒的实验和仿真结果


电源仿真器预测数据中心动态性能

图 9:电压暂降 >30% 的实验和仿真结果

图 9 显示了大于 30% 的更严重的电压暂降。这里,数据中心负载在暂降后 20 毫秒与电网断开连接,以保护 PSU 并维持正常的服务器运行。UPS 电池开启以持续支持负载,而 P t,pu和 Q t,pu在减载后降至零。综上所述,以上结果表明实验仿真与仿真模型的一致性,验证了功率仿真器的准确性。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭