当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:针对目前公司车间工件吊装及码垛的现状,介绍了一种自动夹取及码垛的机械手装置,并就该机械手总体设计方案、机械手结构及有限元强度分析、液压系统、PLC控制回路进行阐述。实践结果证明,该机械手能满足生产线的要求。

引言

目前,公司生产工件时,常使用电动葫芦吊装及码垛,但该装备存在一定缺陷:首先,存在工件掉落砸伤工人的隐患,其次效率较低,工件制造完成后需要额外人工吊装及码垛。而使用机械手代替人工吊运码垛,可以提高生产效率和安全性。机械手是模仿人手部分动作,按照给定的程序、轨迹和要求实现自动抓取、搬运等动作的自动化机械装置。

1机械手总体设计方案

1.1设计技术要求

工件为钢结构,形状为规则的长方体,尺寸为1600mm×700mm×65mm,单件重量80kg;要求:(1)两个码垛工位;(2)从抓取工件开始到完成码垛并回归原位,时间间隔不大于10min;(3)能够抓取不同尺寸规格的工件。

码垛形式:15块工件整齐叠加。

1.2机械手基本形式的选择

常见的机械手按照手臂的坐标形式划分主要有四种:直角坐标式、圆柱坐标式、球坐标式和关节式。其中,直角坐标式是适用于工作位置成行排列的一种机械手,它的手臂可以伸缩、左右和上下移动,按直角坐标x、Y、Z三个方向的直线进行运动。结合公司车间实际情况,本设计采用直角坐标式机械手。

1.3机械手结构和主要部件确认

机械手由执行机构、驱动机构、控制机构与位置传感器组成。执行机构用来抓持工件,结构形式有夹持型、托持型、吸附型等,根据工件结构实际情况选择夹持型。驱动机构用来驱动各种运动以实现规定的动作,根据动力源的不同,一般有电动、机械、液压、气动等形式,此处选择电动、液压、气动多种传动相结合的复合传动机构。控制机构选择PLC。

2工作原理

如图1所示,机械手夹具处在初始取件位置,工件通过生产线运动到工件平台,夹具下降到工件位置并夹紧工件后开始上升,移动小车开始左移到A工位处,夹具下降并松开放下工件,然后夹具重新回到初始位置,重复下一个周期循环。A工位码垛完成后执行B工位的码垛。夹具的夹紧、松开由气缸驱动,夹具的上升、下降由液压缸驱动。夹具的运动流程如图2所示。

3机械手夹具结构设计

机械手结构设计的难点在于夹具的结构设计,它要求能够很好地夹紧、松开且能夹取不同规格的工件。

3.1作图法

确认已知尺寸和要求,对于某些不能确认的尺寸给出初始值,并按图3所示作图法最终确认出合适的夹杆长度Ll、L2、L4以及拉杆长度L3。

3.2有限元强度分析

机械手夹具结构设计完成后,进行有限元分析,结果显示设计满足强度要求,如图4所示。

4液压系统设计

机械手夹具升降液压原理图如图5所示,回路使用液压锁,能使油缸可靠地停止在任意位置上。

基本参数:工件及夹具的重量之和为G。

(1)液压缸外负载为F,取液压缸的机械效率n=0.9:

(2)初选系统工作压力为P=10MPa。

(3)油缸活塞杆受拉时,F=P1A2-P2A1:油缸的速度比为小=v2/v1=D2/(D2-d2),初步选取为1.33。其中,A1、A2分别为无杆腔、有杆腔活塞有效面积:P1、P2分别为工作腔压力、回油腔压力:D、d分别为油缸缸径、杆径。

经过以上计算及圆整,结合《液压气动系统及元件缸内径及活塞杆外径》(GB/T2348一1993)和《液压气动系统及元件缸活塞行程系列》(GB2349一1980),缸径D=63mm,杆径d=40mm,油缸行程为1200mm。

(4)液压泵选择。液压泵的流量为:

一般取K=1.1~1.3,Zgvmax为同时动作时需要的最大流量。根据以上P和Ovp值,从样本中选择齿轮泵型号。

(5)电机的选择。液压泵的总驱动功率为:

式中,np为液压泵的总效率,齿轮泵一般取0.6~0.7。

由此值查样本,选用合适的电动机。

5PLC控制回路设计

(1)机械手的运动流程如图2所示。

(2)PLCI/o输入、输出分配表分别如表1和表2所示。

(3)部分机械手控制程序示例如图6所示。

6结语

针对公司实际需求,设计了一种自动夹取及码垛的机械手装置,该机械手集液压、气动、电动及PLC控制为一体,实现了公司产品下线时自动夹取、码垛等动作。全程无需人工辅助操作,消除了安全隐患,降低了人工成本,提高了工作效率。该装置投入生产以后表现良好。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭