当前位置:首页 > 电源 > 功率器件
[导读]随着更新的集成电路(IC) 技术采用更小的几何尺寸和更低的工作电压,新一代便携式产品对静电放电 (ESD)电压的损坏越来越敏感。因此,手机、MP3播放器和数码相机等便携式产品的设计人员必须评估 ESD 保护选项,以确保他们选择的解决方案能够响应当今 IC 不断变化的需求。本文将解释选择有效 ESD 保护所涉及的关键步骤。

随着更新的集成电路(IC) 技术采用更小的几何尺寸和更低的工作电压,新一代便携式产品对静电放电 (ESD)电压的损坏越来越敏感。因此,手机、MP3播放器和数码相机等便携式产品的设计人员必须评估 ESD 保护选项,以确保他们选择的解决方案能够响应当今 IC 不断变化的需求。本文将解释选择有效 ESD 保护所涉及的关键步骤。

ESD 波形

定义系统级典型 ESD 事件的最常用波形是 IEC61000-4-2 波形,其特点是亚纳秒级上升时间和高电流水平。该波形的规范列出了 4 个级别的 ESD 幅度。大多数设计人员都需要将他们的产品认证到最高级别,即 8kV 接触放电或 15kV 空气放电。在组件级别进行测试时,接触放电测试是最合适的测试,因为空气放电测试在如此小的组件上是不可重复的。

ESD 考虑因素——最近的设计趋势

ESD 保护器件的目的是将数千伏的 ESD 输入降低到受保护 IC 的安全电压,并将电流从 IC 中分流出去。尽管所需 ESD 波形的输入电压和电流在过去几年中没有发生变化,但保护 IC 所需的安全电压水平已经降低。过去,IC 设计对 ESD 更稳健,可以处理更高的电压,因此选择任何保护二极管就足够了能够满足 IEC61000-4-2 4 级要求。对于更新、更敏感的 IC,当今的设计人员不仅必须确保保护器件能够满足 IEC61000-4-2 4 级标准,而且还要确保器件将 ESD 脉冲钳位在足够低的电压,以确保IC没有损坏。在为给定应用选择最佳保护器件时,设计人员必须考虑 ESD 保护器件将传入的 ESD 事件钳位到多低。

如何选择最有效的保护解决方案

保护二极管数据表中的关键直流规格是击穿电压、漏电流和电容。大多数数据表还将说明 IEC61000-4-2 的最大额定值,这表明二极管不会被指定水平的 ESD 脉冲损坏。大多数数据表的问题在于它们没有任何关于高频、高电流瞬态(如 ESD)的钳位电压的信息。与直流相比,在这些类型的瞬态事件中,保护二极管的钳位电压要高得多数据表上指定的电压。然而,很难为 IEC61000-4-2 规范指定钳位电压,因为它旨在成为系统级别的通过/失败规范,而且频率很高。要将这个规范应用于保护器件,不仅要检查保护二极管是通过还是失败,而且还要检查它对 ESD 电压的钳位有多低。

比较保护二极管钳位电压的最佳方法是在 ESD 事件期间对二极管两端的实际电压波形进行示波器截屏。这是使用测试设置完成的。

当查看暴露于 IEC61000-4-2 的 ESD 保护设备的电压波形时,通常会出现初始电压尖峰,然后是二次峰值,最终电压将趋于平稳。初始尖峰是由 IEC61000-4-2 波形的初始电流尖峰和测试结构中的电感导致的过冲共同引起的。然而,初始尖峰持续时间很短,这限制了传输到 IC 的能量。保护装置的钳位性能最好显示在初始超调之后的曲线中。次要峰值是主要问题,因为电压波形持续时间更长,从而增加了 IC 将暴露的总能量。在下面的研究中,钳位电压被定义为次级峰值的最大电压。

基准研究示例

为了进行公平比较,所选部件应具有相似的封装尺寸和数据表规格。为进行比较而选择的部件是三个 ESD 保护二极管,在比较数据表中的电气特性时,它们被认为可以直接替代。这些器件都是双向 ESD 保护二极管,具有相同的击穿电压 (6.8V)、电容 (15pf) 和封装外形 (1.0 mm x 0.6 mm x 0.4 mm)。本研究选择的产品是 Rohm 的 RSB6.8CS、KEC 的 PG05DBTFC 和 ON Semiconductor 的 ESD9B5.0ST5G。

在比较上述部件的直流性能时,它们看起来似乎相同。此外,它们都声称符合 IEC61000-4-2 4 级标准,这意味着它们都能承受高达 8 kV 接触的 ESD 冲击。ESD 保护器件确保保护敏感 IC 的关键性能特性不是直流性能,而是直流性能。然而,尽管设备符合 IEC61000-4-2 第 4 级标准很重要,但更重要的是受保护的 IC 能够存活。为确保 IC 在 ESD 事件中存活,保护二极管必须将 ESD 电压钳位到足够低的值,以免 IC 受损。

为了比较每个器件的钳位性能,我们将对 ESD 事件期间的电压波形进行示波器截图。我们将进行并排测试,保持所有测试条件相同。下面的显示了同一图表上每个二极管对正负 ESD 脉冲的响应。使用的输入脉冲是标准 IEC61000-4-2 4 级触点 (8 kV)。

当施加 ESD 的大电流条件时,三个保护二极管的性能存在明显差异。与 KEC 和 Rohm 部件(蓝色波形)相比,安森美半导体保护解决方案(黑色波形)为 ESD 脉冲提供了更低的钳位电压。对于正脉冲,ON Semiconductor 部件钳位在 14 V,而 KEC 为 18 V,Rohm 为 23 V。在施加负脉冲期间,三个器件之间的钳位电压差变得更加明显。ON Semiconductor 部分的负脉冲钳位电压为 20 V,KEC 部分为 34 V,Rohm 部分为 42 V。在负 ESD 事件期间,这三个器件之间存在明显的区别,其中 KEC 部件的钳位电压比 ON Semiconductor 部件高 70%,而 Rohm 部件的钳位电压是 ON Semiconductor 部件的两倍以上。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。KEC 和 Rohm 产品通过的负脉冲的总电压可能对更容易受到 ESD 损坏的新 IC 设计构成危险。然而,安森美半导体部件在两个方向上都保持低钳位电压,从而将正负 ESD 脉冲的风险降至最低。

一个好的保护器件必须对正负 ESD 脉冲进行良好的钳位,以保证最终产品在实际条件下的最高可靠性。双向低钳位电压可确保器件保护最敏感的 IC,从而使设计人员能够利用最新的 IC 技术推动功能和速度的极限。鉴于钳位电压在选择 ESD 保护器件中的重要性日益增加,许多保护公司都在 ESD 保护器件的数据表中提供了 ESD 钳位屏幕截图。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

上拉电阻和下拉电阻是数字电路中常用的元件,它们的主要作用是确定电路节点在无驱动时的电平状态,以及提高电路的稳定性。

关键字: 上拉电阻 下拉电阻 电阻

无线充电器消除了传统充电线的束缚,用户可以轻松放置充电设备,无需插拔充电线,大大提高了充电过程的便捷性。

关键字: 无线充电器 充电设备 磁场共振

无线充电技术(Wireless charging technology;Wireless charge technology ),源于无线电能传输技术,可分为小功率无线充电和大功率无线充电两种方式。

关键字: 无线充电 大功率 磁场共振

电阻是电路中一种常用的电子元器件,它可以限制电子流的流动,从而改变电路中电流、电压和功率等参数。在电子设备和电路中,电阻承担着非常重要的作用,因此理解电阻的作用和工作原理非常重要。

关键字: 驱动电阻 电子流 电子元器件

改变可调电源的输出电阻可以改变电流输出,一般来说,输出电阻越小,电流输出越大。因此,可以在电路中增加一个并联的电阻或者减小电路中的电阻值来增大电流输出。

关键字: 可调电源 电流 并联

恒流源是一种电路元器件,它能够提供一个稳定的电流输出。在电路中,当需要一个稳定的电流时,就可以使用恒流源。与电压源不同的是,恒流源的输出电流是不受负载电阻的影响的。

关键字: 恒流源 高内阻 电流

逆变器是把直流电能(电池、蓄电瓶)转变成定频定压或调频调压交流电(一般为220V,50Hz正弦波)的转换器。它由逆变桥、控制逻辑和滤波电路组成。

关键字: 电警棒 逆变器 电池

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在一个典型的单片开关电源中,整个系统一般由直流输入端、PWM调制器、功率放大器、输出滤波电感和输出稳压器等部分组成。

关键字: 单机电源 PWM调制器 功率放大器

磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。而锂电池是一种由锂金属或锂合金为负极材料,使用非水电解质溶液的电池。

关键字: 锂电 磷酸铁锂 电池
关闭