当前位置:首页 > > 新基建
[导读]速率匹配技术用于 NR 物理下行链路共享信道 (PDSCH) 传输,使用3GPP技术规范中定义的模式。模式中携带的信息如表1所示。PDSCH 解调参考信号 (DMRS) 未进行速率匹配以保证 DMRS 性能。3GPP 中的速率匹配模式决定了网络如何向 UE 提供速率匹配信息。UE 知道承载 LTE 小区特定参考信号 (CRS) 的资源元素,并在解码 NR PDSCH 时忽略它们。

速率匹配技术用于 NR 物理下行链路共享信道 (PDSCH) 传输,使用3GPP技术规范中定义的模式。模式中携带的信息如表1所示。PDSCH 解调参考信号 (DMRS) 未进行速率匹配以保证 DMRS 性能。3GPP 中的速率匹配模式决定了网络如何向 UE 提供速率匹配信息。UE 知道承载 LTE 小区特定参考信号 (CRS) 的资源元素,并在解码 NR PDSCH 时忽略它们。

LTE 信道载波频率和带宽信息允许共存。LTE 和 MBSFN 子帧配置携带有关配置为 MBSFN 的 LTE 子帧的信息。这会影响发生 CRS 传输的正交频分复用 ( OFDM ) 符号集。LTE CRS 天线端口的数量将影响发生 CRS 传输的 OFDM 符号集以及频域中的资源元素。v-Shift 提供 LTE CRS 的准确频域位置。Release 15中的速率匹配模式仅适用于单载波 LTE,DSS 只能在单个分量载波内使用,将 NR 带宽限制为 20 MHz。

对于 NR 同步信号/物理广播信道 (SS/PBCH),子载波间隔取决于 NR 工作频段。FR1 频段主要使用 15-kHz 子载波间隔,但冲突阻止使用正常的 LTE 子帧,需要 MBSFN 子帧实现。您最多可以在 MBSFN 区域中安装两个 SSB,因为该区域中没有传输 CRS。但是,并非所有 SSB 都在有效的 MBSFN 子帧内,因为 SSB 位置在时域中是固定的,并且需要与有效的 MBSFN 子帧对齐。因此,速率匹配和 MBSFN 子帧技术的混合对于 DSS 传输很重要,一种用于数据传输,另一种用于 SSB 传输。

NR物理下行控制信道(PDCCH)不能与LTE参考信号和控制信道发生冲突。此外,由于 LTE 控制区域,无论您使用的是普通 LTE 子帧还是 MBSFN 子帧,子帧的符号 2 都是可用于传输 NR PDCCH 的最早符号。但是,5G 允许在任何符号上传输 PDCCH。您可以在不与 LTE CRS 冲突的任何其他符号上传输更多 PDCCH。

对于上行链路,半子载波偏移是 DSS 的一个关键考虑因素。LTE 上行链路有一个 7.5 kHz 的偏移,以避免使用 DC 子载波,而不是 NR。DC子载波用于NR上行链路传输。7.5kHz 偏移将破坏 LTE 和 NR 的正交性。为上行链路添加 7.5-kHz 频移可解决这一挑战,但 NR UE 需要支持它。

DSS RF 要求和验证挑战

测量 DSS 时要考虑的关键方面之一是 4G 和 5G 系统之间的同步。它们必须在时域和频域中保持同步,以防止资源块错位。另一个需要注意的关键方面是 LTE 和 NR 数据包调度器之间的快速协调速率,这对于处理资源的动态分配至关重要。分配相同的资源会导致 UE 解码失败。

此外,请记住,DSS 还为 PDSCH 引入了替代 DMRS 位置。它将额外的 DMRS 位置从符号 11 移动到符号 12,以避免与符号 11 中存在的 LTE CRS 发生冲突。UE 需要通知网络它支持将符号 12 用于 DMRS,以避免高误块率。从测量的角度来看,LTE 和 NR 系统的同步至关重要。同时捕获和并行 LTE 和 NR 测量是实验室环境中在现场使用硬件测试之前验证实施的关键。

在测试 DSS 发射机时,验证 LTE 和 NR 信号是否可以从组合信号中分离出来很重要。您应该检查具有高同步相关性的成功同步。验证现有 LTE 设备的功能也很关键,因为它们必须不受影响。您还需要检查使用 MBSFN 子帧的 SS/PBCH 传输是否成功,以及 NR PDSCH 上的速率匹配模式实现是否正确。检查低误差向量幅度 (EVM) 和循环冗余校验 (CRC) 通过/失败将告诉您您的物理层实现是否正确。

使用 3GPP 第 16 版增强的 DSS

DSS 给设计和测试工程师带来了新的挑战,但对网络运营商来说却是一项强大的功能,使他们能够使用现有频谱部署 NR。与现有 LTE 设备的向后兼容性还确保 LTE 用户继续体验相同的服务质量。对于移动运营商来说,这些好处太有吸引力了,不能放弃,未来 DSS 的实施只会增加。

3GPP 规范也在不断发展。3GPP 第 16 版将引入 DSS 资源效率的改进。NR PDSCH B 类长度将从最多 7 个符号增加到 9 个或 10 个符号,其中定义了 DMRS 模式以避免与包含 LTE-CRS 的符号发生冲突。LTE-CRS 速率匹配模式还将支持多个 LTE 分量载波,使宽带 5G NR 载波能够覆盖多个 LTE 分量载波。这些增强功能将使 DSS 对运营商更具吸引力。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭