当前位置:首页 > 公众号精选 > 大话硬件
[导读]在设计DC-DC电路时,经常会考虑它的效率,90%还是在80%的效率对于一个消费电子设备的续航来说,存在非常大的区别。

大家好,这里是大话硬件。

在设计DC-DC电路时,经常会考虑它的效率,90%还是在80%的效率对于一个消费电子设备的续航来说,存在非常大的区别。


有时候在看某芯片的规格书,器件标称的效率能达到92%。但是自己按照同样的输入、输出电压、负载电流来设计电路,然后测试效率,为什么测试的结果只有85%,87%,就是达不到90%以上呢?


实际上DC-DC的效率测试,不仅仅和芯片有关,与我们的测试方法,电感和电容的选择,芯片的工作模式也有关系。


今天这篇文章我们来聊聊电感的5大损耗,关于测试方法,芯片工作模式,在后续的文章中会有分享。本篇文章的框架如下:


1.趋肤效应

2.邻近效应

3.铁损铜损

4.涡流损耗

5.磁滞损耗


01
趋肤效应


在分析电感的损耗之前需要了解两个高频的效应——趋肤效应,邻近效应。


趋肤效应:交变电流通过导线时,电流在导线横截面上的分布是不均匀的,导体表面的电流密度大于中心的密度,且交变电流的频率越高,这种趋势越明显,该现象称为趋肤效应(skin effiect),趋肤效应也称集肤效应。


如果流向导体的电流的频率升高,电流就会只流过导体的表面,表面部分的电流密度增大,电阻值增加。我们将这种效应叫做趋肤效应,也叫做表皮效应。



产生趋肤效应的本质原因是电流和磁场的相关关系,用下面的图来表示:


对一根流过电流为I的导线,在导线的垂直平面形成交变磁场,交变磁场在导体内部产生感应电动势,感应电动势在导体内部形成涡流电流,涡流在导体内部与电流的变化趋势相反,阻碍电流的变化,涡流的变化在导体表面与电流的变化趋势相同。


在导体内部,等效电阻变大,而导体表面等效电阻变小,因此电流更趋向于在导体表面流动,但相比电流在整个截面积为S的导线上流动,在表面流动意味着导线的电阻增大了。


02
邻近效应



邻近效应:多根导线邻近时,每个绕组形成的磁场感应涡流,高频时会集中于导体内的电流邻近的导线相邻接的狭小区域而流过,邻近部分的电流密度增大,电阻值增加。我们将这种效应叫做邻近效应。


如下图所示,两个同方向的导线流通相同方向的电流,在两个导线相邻的位置电流的大小为电流I减去涡流,而在远离的一边,电流为I加上涡流。



上面的两相邻导体电流同相流动时电流的分布,如果两个导体的电流是反向的流动,导体的之间线缆的流动如下所示:


当回流导体靠近时,两根导线的场向量将相加。在两导体相邻之间,磁场方向相同而加强;两导线之外侧,磁场相反而抵销,磁场很弱,或为零。在导体内部,由两导体外侧向内逐渐加强,到达导体的内表面时磁场最强。


03
铁损 铜损


在电感中主要有4个损耗,铜损,铁损,涡流损耗,磁滞损耗。


铜损:电流流向导线时的电阻成分引起的损耗称为铜损。


对于一个电感来说,本身就只有两部分,线圈和磁芯,其中线圈为铜损,磁芯为铁损。磁束通过磁芯时磁芯内产生的损耗(磁滞损耗和涡流损耗)称为铁损。因此,铁损都是有磁芯产生的。



04
涡流损耗

涡流损耗:因电磁感应而变化的磁场会在导体的磁芯中产生涡状的电流。产生此电流的能量会因磁芯材料的电阻而被转换成热并成为损耗。我们将这种损耗叫做涡流损耗。



05
磁滞损耗

磁滞损耗:如果是磁芯内的磁场变化或者反转,就会伴随磁滞(磁芯材料的BH图中所示的磁滞回线)而返回原先的状态。为了此磁滞的运动而消耗的能量会作为热损耗掉。我们将这种损耗叫做磁滞损耗,磁滞损耗与磁滞回线的面积成正比。

根据前面的分析,磁芯在磁场中会被磁化,磁化的过程会使内部的磁畴发现方向的偏转,在偏转的时候,与外磁场方向相差不大的磁畴发生了‘弹性’转动,这就是说当外磁场去掉时,磁畴仍能恢复原来的方向;而还有一部分磁畴要克服磁畴壁之间存在摩擦,发生刚性转动,即当外磁场去除时,磁畴仍保持磁化方向。


因此磁化时,送到磁场的能量包含两部分:前者转为势能,即去掉外磁化电流时,磁场能量可以返回电路;而后者变为克服摩擦使磁芯发热消耗掉,这就是磁滞损耗。根基磁滞曲线可知,当磁滞曲线的面积越大时,需要克服摩擦摩擦发生刚性转动需要的能量越多。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

4月9日至11日,深圳会展中心(福田)星光璀璨,2024中国电子展盛大举行。展会期间,英麦科亦携全新产品惊艳亮相,再度彰显其在电感领域的卓越实力与巨大潜力。

关键字: 英麦科 电感 半导体

本实验室活动的目标是测量电感的自谐振频率(SRF),并根据测量数据确定寄生电容。

关键字: 电感 寄生电容 自谐振频率

LC振荡器是电子学中一种常用的振荡器类型,由电感(L)和电容(C)元件组成。它利用电感和电容之间的相互耦合,产生一个自激振荡。LC振荡器具有结构简单、调整方便、频率可调范围广等优点,广泛应用于通信、广播、电视、测量等领域...

关键字: LC振荡器 电感 电容

以下内容中,小编将对电源的相关内容进行着重介绍和阐述,希望本文能帮您增进对电源的了解,和小编一起来看看吧。

关键字: 电源 电容器 电感

镇流器包括电子式镇流器和电感式镇流器,但随着时光的流逝,电子式镇流器在现实中的应用越来越广泛,电感式镇流器由于某些缺点的存在使得其应用范围越来越小。

关键字: 电子镇流器 整流 电感

电子镇流器(Electronic ballast),是镇流器的一种,是指采用电子技术驱动电光源,使之产生所需照明的电子设备。与之对应的是电感式镇流器(或镇流器)。

关键字: 电子镇流器 电感 电光源

LC振荡电路是指由电感(L)和电容(C)构成的振荡电路。这种电路在电子工程、通信工程和射频电路设计中经常被用到。LC振荡电路的起振条件有两个主要部分:

关键字: LC振荡电路 电容 电感

今天,小编将在这篇文章中为大家带来贴片电感的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 电感 贴片电感

在下述的内容中,小编将会对贴片电感、磁珠的相关消息予以报道,如果贴片电感、磁珠是您想要了解的焦点之一,不妨和小编共同阅读这篇文章哦。

关键字: 电感 磁珠 贴片电感

中国成为世界工厂,电子变压器制作业也发展迅速,因为电子变压器在生活中使用的也越来越广 泛,日光灯、台灯、节能灯、广告灯等都用到了电子变压器。而且电子技术产业领域越来越广泛, 电子技术也慢慢的深入到越来越多的领域,电子变压...

关键字: 电子变压器 电子技术 电感
关闭